Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These findings provide evidence for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced β-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-13-209) contains supplementary material, which is available to authorized users.
BackgroundIn Latin America, 18 million people are infected with Trypanosoma cruzi, the agent of Chagas' disease, with the greatest economic burden. Vertebrate calreticulins (CRT) are multifunctional, intra- and extracellular proteins. In the endoplasmic reticulum (ER) they bind calcium and act as chaperones. Since human CRT (HuCRT) is antiangiogenic and suppresses tumor growth, the presence of these functions in the parasite orthologue may have consequences in the host/parasite interaction. Previously, we have cloned and expressed T. cruzi calreticulin (TcCRT) and shown that TcCRT, translocated from the ER to the area of trypomastigote flagellum emergence, promotes infectivity, inactivates the complement system and inhibits angiogenesis in the chorioallantoid chicken egg membrane. Most likely, derived from these properties, TcCRT displays in vivo inhibitory effects against an experimental mammary tumor.Methodology and Principal FindingsTcCRT (or its N-terminal vasostatin-like domain, N-TcCRT) a) Abrogates capillary growth in the ex vivo rat aortic ring assay, b) Inhibits capillary morphogenesis in a human umbilical vein endothelial cell (HUVEC) assay, c) Inhibits migration and proliferation of HUVECs and the human endothelial cell line Eahy926. In these assays TcCRT was more effective, in molar terms, than HuCRT: d) In confocal microscopy, live HUVECs and EAhy926 cells, are recognized by FITC-TcCRT, followed by its internalization and accumulation around the host cell nuclei, a phenomenon that is abrogated by Fucoidin, a specific scavenger receptor ligand and, e) Inhibits in vivo the growth of the murine mammary TA3 MTXR tumor cell line.Conclusions/SignificanceWe describe herein antiangiogenic and antitumor properties of a parasite chaperone molecule, specifically TcCRT. Perhaps, by virtue of its capacity to inhibit angiogenesis (and the complement system), TcCRT is anti-inflammatory, thus impairing the antiparasite immune response. The TcCRT antiangiogenic effect could also explain, at least partially, the in vivo antitumor effects reported herein and the reports proposing antitumor properties for T. cruzi infection.
Vaccination of mice with an antigen extract from Taenia solium cysticerci induced protection against challenge with T. crassiceps cysticerci as successfully as did antigen extracts from T. crassiceps. Vaccination was more effective in male than in female mice and in the resistant strain (BALB/B) more so than in the susceptible strain (BALB/c). While only the resistant strain was completely protected by vaccination, the parasite load of the susceptible strain was significantly reduced by vaccination. Cross immunity between the human and murine parasites establishes murine T. crassiceps cysticercosis as a convenient laboratory model in which to test promising T. solium antigens aimed at vaccine development against T. solium cysticercosis. Further, results point to strong interactions of the immune system with sexual and histocompatibility factors in the host's dealing with cysticercosis.
BackgroundDuring the last few years it has been shown in several laboratories that Celecoxib (Cx), a non-steroidal anti-inflammatory agent (NSAID) normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described.Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR).ResultsCx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM), inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF) production and cell proliferation in the tumor.ConclusionThe antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs) and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.
In this work, we have completed a study of the development of the ovoviviparous lizard Liolaemus tenuis tenuis. Ovoviviparity in this lizard is a condition in which eggs are retained within the reproductive duct for about 60 days. During this period the phases of segmentation, gastrulation, neurulation, presomitic, and somitic embryos transpire. During the months of December and January the eggs are laid, and at this time the embryos are comparable to stage 27 Liolaemus gravenhorsti lizard embryos, or to stage 29 Calotes versicolor lizard embryos. Differentiation of the facial region occurs between Days 12 and 42 after egg laying. Limbs develop rapidly between the 8th and 23rd days. By 53 days the appendicular skeleton is completely formed. After 36 days the mesonephros begins to degenerate, and its function is gradually taken over by the developing metanephros. Newborn lizards do not possess an egg caruncle. During the period up to hatching, there is a great increase of liquid within the egg, presumably amniotic fluid. Cracks develop in the leathery shell shortly before hatching and are, perhaps, the first sign of the onset of hatching. Increase of liquid in the egg during postlaying development accounts for its increase in weight and change in shape. Weight of the embryo at hatching does not exceed 32% of the total weight of the egg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.