The energy sector is in the spotlight today for its contribution to global warming and its dependence on global geopolitics. Even though many countries have reduced their use of coal, the COVID-19 crisis, the drop in temperatures in Central Asia, and the war between Russia and Ukraine have shown that coal continues to play an important role in this sector today. As long as we continue to depend energetically on coal, it is necessary to create the basis for the successful extraction and industrial use of coal mine methane (CMM), for example, as an unconventional energy resource. Early degassing technology is a technique that allows for the extraction of the methane contained within the coal seams. The application of this technology would reduce emissions, improve mine safety, and even increase their profitability. However, this technology has been understudied and is still not implemented on a large scale today. Moreover, mines with this technology generally burn the extracted methane in flares, losing a potential unconventional fuel. This study, therefore, presents different scenarios of the use of coalbed methane (CBM), with the aim of generating an impact on pollutant emissions from coal mines. To this end, a model has been designed to evaluate the economic efficiency of degasification. In addition, an emissions analysis was carried out. The results showed that the use of this technology has a negative impact on the economy of mines, which can be completely reversed with the use of CBM as fuel. Furthermore, it is observed that degasification, in addition to reducing the number of accidents in coal mining, reduces emissions by 30–40%.
In recent years, coal mine methane measurement techniques in mines have been gaining importance as poor firedamp control in work can cause the interruption of production and even fatal accidents. Since there is currently a variety of methane measurement equipment with different functional characteristics and measurement principles, a study is needed to indicate which type of equipment has the highest degree of confidence. This research presents the results of a study carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid that aims to analyze the reliability of methane detection systems used in underground mining. Therefore, a series of portable and non-portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations, such as time of response, dust effect, temperature, pressure, etc. The test equipment is usually the one used in the certification and calibration of these devices, subject to the LOM quality system. The results of these tests allowed for defining a marking system that led to a ranking of the tested methane detectors in order to find the advantages and disadvantages of each type. From the performed tests, a summary of the main sources of sensor inaccuracy was reported. It was found that catalytic sensors might present significant deviations when testing high concentrations in short periods of time or low concentrations during long periods of time. On the other hand, devices with an interferometric sensor can be unreliable as the measures are very sensitive to changes in environmental conditions, and optical sensors present longer response times than catalytic sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.