Recently, development in intelligent transportation systems (ITS) requires the input of various kinds of data in real-time and from multiple sources, which imposes additional research and application challenges. Ongoing studies on Data Fusion (DF) have produced significant improvement in ITS and manifested an enormous impact on its growth. This paper reviews the implementation of DF methods in ITS to facilitate traffic flow analysis (TFA) and solutions that entail the prediction of various traffic variables such as driving behavior, travel time, speed, density, incident, and traffic flow. It attempts to identify and discuss real-time and multi-sensor data sources that are used for various traffic domains, including road/highway management, traffic states estimation, and traffic controller optimization. Moreover, it attempts to associate abstractions of data level fusion, feature level fusion, and decision level fusion on DF methods to better understand the role of DF in TFA and ITS. Consequently, the main objective of this paper is to review DF methods used for real-time and multi-sensor (heterogeneous) TFA studies. The review outcomes are (i) a guideline of constructing DF methods which involve preprocessing, filtering, decision, and evaluation as core steps, (ii) a description of the recent DF algorithms or methods that adopt real-time and multi-sensor sources data and the impact of these data sources on the improvement of TFA, (iii) an examination of the testing and evaluation methodologies and the popular datasets and (iv) an identification of several research gaps, some current challenges, and new research trends.INDEX TERMS Intelligent transportation systems, traffic flow analysis, data fusion; real-time processing, multi-sensor, heterogeneous data, machine learning.
Background: Prostate cancer remains the second deadliest cancer for American men despite clinical advancements. Currently, magnetic resonance imaging (MRI) is considered the most sensitive non-invasive imaging modality that enables visualization, detection, and localization of prostate cancer, and is increasingly used to guide targeted biopsies for prostate cancer diagnosis. However, its utility remains limited due to high rates of false positives and false negatives as well as low inter-reader agreements. Purpose: Machine learning methods to detect and localize cancer on prostate MRI can help standardize radiologist interpretations. However, existing machine learning methods vary not only in model architecture, but also in the ground truth labeling strategies used for model training. We compare different labeling strategies and the effects they have on the performance of different machine learning models for prostate cancer detection on MRI. Methods: Four different deep learning models (SPCNet, U-Net, branched U-Net, and DeepLabv3+) were trained to detect prostate cancer on MRI using 75 patients with radical prostatectomy, and evaluated using 40 patients with radical prostatectomy and 275 patients with targeted biopsy. Each deep learning model was trained with four different label types: pathology-confirmed radiologist labels, pathologist labels on whole-mount histopathology images, and lesion-level and pixel-level digital pathologist labels (previously validated deep learning algorithm on histopathology images to predict pixel-level Gleason patterns) on whole-mount histopathology images. The pathologist andThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.