An essential challenge in generation scheduling (GS) problems of hydrothermal power systems is the inclusion of adequate modeling of the hydroelectric production function (HPF). The HPF is a nonlinear and nonconvex function that depends on the head and turbined outflow. Although the hydropower plants have multiple generating units (GUs), due to a series of complexities, the most attractive modeling practice is to represent one HPF per plant, i.e., a single function is built for representing the plant generation instead of the generation of each GU. Furthermore, due to the computation time constraints and representation of nonlinearities, the HPF must be given by a piecewise linear (PWL) model. This paper presented some continuous PWL models to include the HPF per plant in GS problems of hydrothermal systems. Depending on the type of application, the framework allows a choice between the concave PWL for HPF modeled with one or two variables and the nonconvex (more accurate) PWL for HPF dependent only on the turbined outflow. Basically, in both PWL models, offline, mixed-integer linear (or quadratic) programming techniques are used with an optimized pre-selection of the original HPF dataset obtained through the Ramer-Douglas-Peucker algorithm. As a highlight, the framework allows the control of the number of hyperplanes and, consequently, the number of variables and constraints of the PWL model. To this end, we offer two possibilities: (i) minimizing the error for a fixed number of hyperplanes, or (ii) minimizing the number of hyperplanes for a given error. We assessed the performance of the proposed framework using data from two large hydropower plants of the Brazilian system. The first has 3568 MW distributed in 50 Bulb-type GUs and operates as a run-of-river hydro plant. In turn, the second, which can vary the reservoir volume by up to 1000 hm3, possesses 1140 MW distributed in three Francis-type units. The results showed a variation from 0.040% to 1.583% in terms of mean absolute error and 0.306% to 6.356% regarding the maximum absolute error even with few approximations.
O problema de distribuição ótima de carga (DOC) em uma usina hidrelétrica (UHE) visa determinar, em tempo real, o despacho de cada unidade geradora (UG) da maneira mais eficiente possível. As não linearidades e não convexidades da função de produção hidrelétrica (FPH) de cada UG tornam desafiadora a busca por uma solução ótima neste problema. Uma das maneiras de lidar eficientemente com as não linearidades do problema de DOC é através da linearização e do tratamento do problema como uma programação linear inteira-mista (PLIM). Neste cenário, este artigo apresenta um sistema de recomendação de DOC baseado em um modelo de PLIM para a UHE de Santo Antônio. Diversas peculiaridades desta UHE tornam esse problema desafiador, destacando-se o elevado número de UGs, turbinas com diferentes curvas-colina, queda bruta dependente da localização da UG e ainda, perdas hidráulicas em função do elevado grau de obstrução nas grades advindas dos detritos do Rio Madeira. O sistema de recomendação faz uso de uma série de medições em tempo real, resolve o modelo de PLIM e apresenta a DOC para os operadores da usina. Os resultados deste sistema indicam um potencial de aumento de geração de 1,0 % na UHE, particularmente em período de seca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.