The multiobjective optimization on the basis of ratio analysis (MOORA) method captures diverse features such as the criteria and alternatives of appraising a multiple criteria decision-making (MCDM) problem. At the same time, the multiple criteria problem includes a set of decision makers with diverse expertise and preferences. In fact, the literature lists numerous approaches to aid in this problematic task of choosing the best alternative. Nevertheless, in the MCDM field, there is a challenge regarding intangible information which is commonly involved in multiple criteria decision-making problem; hence, it is substantial in order to advance beyond the research related to this field. Thus, the objective of this paper is to present a fused method between multiobjective optimization on the basis of ratio analysis and Pythagorean fuzzy sets for the choice of an alternative. Besides, multiobjective optimization on the basis of ratio analysis is utilized to choose the best alternatives. Finally, two decision-making problems are applied to illustrate the feasibility and practicality of the proposed method.
Manufacturing companies usually expect strategic improvements to focus on reducing both waste and variability in processes, whereas markets demand greater flexibility and low product costs. To deal with this issue, lean manufacturing (LM) emerged as a solution; however, it is often challenging to evaluate its true effect on corporate performance. This challenge can be overcome, nonetheless, by treating it as a multi-criteria problem using the Hesitant Fuzzy linguistic and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. In fact, the hesitant fuzzy linguistic term sets (HFLTS) is vastly employed in decision-making problems. The main contribution of this work is a method to assess the performance of LM applications in the manufacturing industry using the hesitant fuzzy set and TOPSIS to deal with criteria and attitudes from decision makers regarding such LM applications. At the end of the paper, we present a reasonable study to analyze the obtained results.
A multi-agent system (MAS) is suitable for addressing tasks in a variety of domains without any programmed behaviors, which makes it ideal for the problems associated with the mobile robots. Reinforcement learning (RL) is a successful approach used in the MASs to acquire new behaviors; most of these select exact Q-values in small discrete state space and action space. This article presents a joint Q-function linearly fuzzified for a MAS’ continuous state space, which overcomes the dimensionality problem. Also, this article gives a proof for the convergence and existence of the solution proposed by the algorithm presented. This article also discusses the numerical simulations and experimental results that were carried out to validate the proposed algorithm.
Companies are constantly changing in their organization and the way they treat information. In this sense, relevant data analysis processes arise for decision makers. Similarly, to perform decision-making analyses, multi-criteria and metaheuristic methods represent a key tool for such analyses. These analysis methods solve symmetric and asymmetric problems with multiple criteria. In such a way, the symmetry transforms the decision space and reduces the search time. Therefore, the objective of this research is to provide a classification of the applications of multi-criteria and metaheuristic methods. Furthermore, due to the large number of existing methods, the article focuses on the particle swarm algorithm (PSO) and its different extensions. This work is novel since the review of the literature incorporates scientific articles, patents, and copyright registrations with applications of the PSO method. To mention some examples of the most relevant applications of the PSO method; route planning for autonomous vehicles, the optimal application of insulin for a type 1 diabetic patient, robotic harvesting of agricultural products, hybridization with multi-criteria methods, among others. Finally, the contribution of this article is to propose that the PSO method involves the following steps: (a) initialization, (b) update of the local optimal position, and (c) obtaining the best global optimal position. Therefore, this work contributes to researchers not only becoming familiar with the steps, but also being able to implement it quickly. These improvements open new horizons for future lines of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.