Abstract. Historically, the polylogarithm has attracted specialists and nonspecialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier.
Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble results for Euler/Zagier sums (also known as multidimensional zeta/harmonic sums) of arbitrary depth, including sign alternations. Many of our results were obtained empirically and are apparently new. By carefully compiling and examining a huge data base of high precision numerical evaluations, we can claim with some confidence that certain classes of results are exhaustive. While many proofs are lacking, we have sketched derivations of all results that have so far been proved.(to appear in Electronic J. Combinatorics)
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which admits a multiple Jackson q-integral representation whose limiting case is the Drinfel'd simplex integral for the ordinary multiple polylogarithm when q = 1. The multiple Jackson q-integral representation for multiple q-zeta values leads to a second multiplication rule satisfied by them, referred to as a q-shuffle. Despite this, it appears that many numerical relations satisfied by ordinary multiple zeta values have no interesting q-extension. For example, a suitable q-analog of Broadhurst's formula for ζ({3, 1} n ), if one exists, is likely to be rather complicated. Nevertheless, we show that a number of infinite classes of relations, including Hoffman's partition identities, Ohno's cyclic sum identities, Granville's sum formula, Euler's convolution formula, Ohno's generalized duality relation, and the derivation relations of Ihara and Kaneko extend to multiple q-zeta values. 2004 Elsevier Inc. All rights reserved.
Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuffle product rule allows the possibility of a combinatorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with certain repeated arguments. We also prove a similar cyclic sum identity. Finally, we present extensive computational evidence supporting an infinite family of conjectured MZV identities that simultaneously generalize the Zagier identity.
We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of the argument, the desired speed of computation, and the incidence of what we call "value recycling".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.