Preparation of Grignard reagents from organic halides and magnesium pose potential safety hazards on scale-up due to their high exothermic potential which can lead to overpressurization, discharge of contents, or explosion. One of the main challenges arises in ensuring the reaction has initiated before excessive accumulation of organic halide occurs or that the reaction does not stall and then reinitiate. Specifically, in production-scale equipment, it is sometimes difficult to ascertain whether initiation has occurred at all and whether it is safe to proceed. By using in situ infrared technology (FTIR), we have developed a method for safer scale-up of Grignard chemistry that can definitively identify that initiation has occurred. The process would involve adding approximately 5% of the organic halide charge and waiting for the initiation to occur using an in situ FTIR probe. FTIR spectroscopy can be used to monitor the accumulation of the halide and reveal when initiation occurs by the resulting decrease in the infrared absorbance. Once it has been determined that the organic halide has reacted as a result of the initiation, it is safe to proceed with the remaining halide charge. The organic halide concentration can then be continuously monitored after initiation to ensure the reaction does not stall or to halt the feed if it does stall. Further, it was shown that IR can be used to quantify the amount of water that is present in THF which is needed to confirm that the THF is dry. The IR results along with reaction calorimetry and ventsizing data are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.