SummaryAdvances in determination of polymer structure and in preservation of structure for electron microscopy provide the best view to date of how polysaccharides and structural proteins are organized into plant cell walls. The walls that form and partition dividing cells are modified chemically and structurally from the walls expanding to provide a cell with its functional form. In grasses, the chemical structure of the wall differs from that of all other flowering plant species that have been examined. Nevertheless, both types of wall must conform to the same physical laws. Cell expansion occurs via strictly regulated reorientation of each of the wall's components that first permits the wall to stretch in specific directions and then lock into final shape. This review integrates information on the chemical structure of individual polymers with data obtained from new techniques used to probe the arrangement of the polymers within the walls of individual cells. We provide structural models of two distinct types of walls in flowering plants consistent with the physical properties of the wall and its components.
The advantages of Arabidopsis thaliana (L.) Heynh. for genetic studies are well known, but its diminutive stature and associated low biomass at maturity make it a challenging species for complementary physiological and biochemical studies. Hydroponic culture can significantly increase plant growth and produce uniform, stress-free root and shoot material that can be harvested throughout the life span of the plant. However, many shy away from the use of hydroponic culture because of the perceived difficulties in set-up and maintenance. Although other methods for the hydroponic culture of Arabidopsis have been reported (Rodecap et al., 1994; Delhaize and Randall, 1995; Hirai et al., 1995), they suffer from various shortcomings, including poor aeration, loss of root material, overcrowding, excess manipulation, and less-than-favorable environmental conditions. In this paper we describe an easy, low-maintenance method of hydroponic culture for Arabidopsis that combines the use of rockwool culture for uniform seedling establishment and a closed system of solution culture for the duration of plant growth. In addition, some consideration is given to temperature and light conditions that favor biomass production.The most difficult part of hydroponic culture for Arabidopsis is to rstablish a good root system, because young seedlings are prone to hypoxic stress from water logging. Rockwool (GrodanHP, Agro Dynamics, East Brunswick, NJ) provides an excellent, well-aerated rooting environment that is a far superior medium for reliable and uniform seedling establishment compared with other media we have tried, including cheesecloth, blue blotter paper, brown germination paper, filter paper, fiberglass matting, agar, and soil-or vermiculite-filled straws. Rockwool is a mixture of igneous rock and limestone that is heated and spun into mats. Even when saturated, rockwool holds about 15% air space.
Cell wall polysaccharides in developing barley coleoptiles were examined using acetic acid-nitric acid extraction, alditol acetate and methylation analyses and enzymatic digestion. The coleoptile cell wall from imbibed grain was rich in pectic polysaccharides (30 mol%), arabinoxylan (25 mol%), cellulose (25 mol%) and xyloglucan (6 mol%), but contained only low levels of (1-->3,1-->4)-beta-D-glucan (1 mol%). During 5 days of coleoptile growth, pectic polysaccharides decreased steadily to about 9 mol%, while (1-->3,1-->4)-beta-D-glucan increased to 10 mol%. Following the cessation of growth of the coleoptiles at about 5 days, (1-->3,1-->4)-beta-D-glucan content rapidly decreased to 1 mol%. The cellulose content of the walls remained at about 35-40 mol% throughout coleoptile growth. Similarly, arabinoxylan content remained essentially constant at 25-30 mol% during growth, although the ratio of substituted to unsubstituted 4-linked xylosyl units decreased from about 4:1 to 1:1. Xyloglucan content ranged from 6 mol% to 10 mol% and the oligosaccharide profile determined using a xyloglucan-specific endoglucanase and MALDI-TOF mass spectrometry indicated that the oligosaccharides XXGG and XXGGG were the principal components, with one and two acetyl groups, respectively, Thus, dramatic changes in wall composition were detected during the growth of barley coleoptiles, both with respect to the relative abundance of individual wall constituents and to the fine structure of the arabinoxylans.
Specific cDNA fragments corresponding to putative cellulose synthase genes ( CesA ) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a "dwarf" phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ف 50 to ف 33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.