SoyBase, the USDA-ARS soybean genetic database, is a comprehensive repository for professionally curated genetics, genomics and related data resources for soybean. SoyBase contains the most current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. The quantitative trait loci (QTL) represent more than 18 years of QTL mapping of more than 90 unique traits. SoyBase also contains the well-annotated ‘Williams 82’ genomic sequence and associated data mining tools. The genetic and sequence views of the soybean chromosomes and the extensive data on traits and phenotypes are extensively interlinked. This allows entry to the database using almost any kind of available information, such as genetic map symbols, soybean gene names or phenotypic traits. SoyBase is the repository for controlled vocabularies for soybean growth, development and trait terms, which are also linked to the more general plant ontologies. SoyBase can be accessed at http://soybase.org.
Using plant EST collections, we obtained 1392 potential gene duplicates across 8 plant species: Zea mays, Oryza sativa, Sorghum bicolor, Hordeum vulgare, Solanum tuberosum, Lycopersicon esculentum, Medicago truncatula, and Glycine max. We estimated the synonymous and nonsynonymous distances between each gene pair and identified two to three mixtures of normal distributions corresponding to one to three rounds of genome duplication in each species. Within the Poaceae, we found a conserved duplication event among all four species that occurred approximately 50-60 million years ago (Mya); an event that probably occurred before the major radiation of the grasses. In the Solanaceae, we found evidence for a conserved duplication event approximately 50-52 Mya. A duplication in soybean occurred approximately 44 Mya and a duplication in Medicago about 58 Mya. Comparing synonymous and nonsynonymous distances allowed us to determine that most duplicate gene pairs are under purifying, negative selection. We calculated Pearson's correlation coefficients to provide us with a measure of how gene expression patterns have changed between duplicate pairs, and compared this across evolutionary distances. This analysis showed that some duplicates seemed to retain expression patterns between pairs, whereas others showed uncorrelated expression.
Synteny between soybean and Arabidopsis was studied by using conceptual translations of DNA sequences from loci that map to soybean linkage groups A2, J, and L. Synteny was found between these linkage groups and all four of the Arabidopsis chromosomes, where GenBank contained enough sequence for synteny to be identified confidently. Soybean linkage group A2 (soyA2) and Arabidopsis chromosome I showed significant synteny over almost their entire lengths, with only 2-3 chromosomal rearrangements required to bring the maps into substantial agreement. Smaller blocks of synteny were identified between soyA2 and Arabidopsis chromosomes IV and V (near the RPP5 and RPP8 genes) and between soyA2 and Arabidopsis chromosomes I and V (near the PhyA and PhyC genes). These subchromosomal syntenic regions were themselves homeologous, suggesting that Arabidopsis has undergone a number of segmental duplications or possibly a complete genome duplication during its evolution. Homologies between the homeologous soybean linkage groups J and L and Arabidopsis chromosomes II and IV also revealed evidence of segmental duplication in Arabidopsis. Further support for this hypothesis was provided by the observation of very close linkage in Arabidopsis of homologs of soybean Vsp27 and Bng181 (three locations) and purple acid phosphatase-like sequences and homologs of soybean A256 (five locations). Simulations show that the synteny and duplications we report are unlikely to have arisen by chance during our analysis of the homology reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.