When melt‐extruded in the presence of triphenylphosphite (TPP), the molecular weight of polyesters such as poly(ethylene terephthalate) (PET) increases with time. Analysis of the PET chain end groups and model studies of high‐temperature reactions indicate that, most likely, the process leading to chain extension of PET in the presence of TPP takes place in two steps. In the first step, TPP rapidly reacts with the hydroxyl end groups by displacing one phenoxy group from the TPP. In the second step, a slow reaction takes place between the alkyldiphenyl phosphite and carboxylic chain end groups, forming an ester bond between the carboxyl and alkyl groups, and producing diphenylphosphite (DPP) as a reaction by‐product. The DPP tautomerizes to its pentacovalently bonded stabler form of diphenylphosphate, the form in which the DPP was usually detected in our analyses. The ester formation results in the extension of the PET chains. Model studies are presented which support the proposed mechanism.
SynopsisThermal degradation behavior of poly( 1,3-phenylene isophthalamide) and poly(chloro-2,4-phenylene isophthalamide) was investigated with the aid of some appropriate model compounds. The pyrolysis products of these materials were identifed by gas chromatography (GC), gas chromatography/Fourier transform infrared spectroscopy (GC/FT-IR), and gas chromatography/mass spectrometry (GC/MS). The residual chars were characterized by IR spectroscopy. Thermogravimetric analysis (TGA) was applied to study the effect of end-group concentration on the degradation characteristics of the two polyamides. Kinetic parameters that describe the thermal degradation of the polyamides were also evaluated by TGA. The results of this investigation suggest that the thermal decomposition of these aromatic polyamides involves homolytic as well as hydrolytic cleavages of the amide units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.