Innate sensing of microbial components is well documented to occur at many cellular sites, including at the cell surface, in the cytosol, and in intracellular vesicles, but there is limited evidence of nuclear innate signaling. In this study we have defined the mechanisms of interferon regulatory factor-3 (IRF-3) signaling in primary human foreskin fibroblasts (HFF) infected with herpes simplex virus 1 (HSV-1) in the absence of viral gene expression. We found that the interferon inducible protein 16 (IFI16) DNA sensor, which is required for induction of IRF-3 signaling in these cells, is nuclear, and its localization does not change detectably upon HSV-1 d109 infection and induction of IRF-3 signaling. Consistent with the IFI16 sensor being nuclear, conditions that block viral DNA release from incoming capsids inhibit IRF-3 signaling. An unknown factor must be exported from the nucleus to activate IRF-3 through cytoplasmic STING, which is required for IRF-3 activation and signaling. However, when the viral ICP0 protein is expressed in the nucleus, it causes the nuclear relocalization and degradation of IFI16, inhibiting IRF-3 signaling. Therefore, HSV-1 infection is sensed in HFF by nuclear IFI16 upon release of encapsidated viral DNA into the nucleus, and the viral nuclear ICP0 protein can inhibit the process by targeting IFI16 for degradation. Together these results define a pathway for nuclear innate sensing of HSV DNA by IFI16 in infected HFF and document a mechanism by which a virus can block this nuclear innate response.innate immunity | interferon | IFN-stimulated genes
Herpes simplex virus (HSV) type 2 infection occurs primarily at the genital mucosal surfaces and is a leading cause of ulcerative lesions. Despite the availability of animal models for HSV-2 infection, little is known regarding the mechanism of immune induction within the vaginal mucosa. Here, we examined the cell types responsible for the initiation of protective Th1 immunity to HSV-2. Intravaginal inoculation of HSV-2 led to a rapid recruitment of submucosal dendritic cells (DCs) to the infected epithelium. Subsequently, CD11c+ DCs harboring viral peptides in the context of MHC class II molecules emerged in the draining lymph nodes and were found to be responsible for the stimulation of IFNγ secretion from HSV-specific CD4+ T cells. Other antigen-presenting cells including B cells and macrophages did not present viral peptides to T cells in the draining lymph nodes. Next, we assessed the relative contribution to immune generation by the Langerhans cells in the vaginal epithelium, the submucosal CD11b+ DCs, and the CD8α+ lymph node DCs. Analysis of these DC populations from the draining lymph nodes revealed that only the CD11b+ submucosal DCs, but not Langerhans cell–derived or CD8α+ DCs, presented viral antigens to CD4+ T cells and induced IFNγ secretion. These results demonstrate a previously unanticipated role for submucosal DCs in the generation of protective Th1 immune responses to HSV-2 in the vaginal mucosa, and suggest their importance in immunity to other sexually transmitted diseases.
Herpes simplex viruses (HSV) can undergo a lytic infection in epithelial cells and a latent infection in sensory neurons. During latency the virus persists until reactivation, which leads to recurrent productive infection and transmission to a new host. How does HSV undergo such different types of infection in different cell types? Recent research indicates that regulation of the assembly of chromatin on HSV DNA underlies the lytic versus latent decision of HSV. We propose a model for the decision to undergo a lytic or a latent infection in which HSV encodes gene products that modulate chromatin structure towards either euchromatin or heterochromatin, and we discuss the implications of this model for the development of therapeutics for HSV infections.
Herpes simplex virus infection of mammalian hosts involves lytic replication at a primary site, such as the cornea, translocation by axonal transport to sensory ganglia and replication, and latent infection at a secondary site, ganglionic neurons. The virus-encoded thymidine kinase, which is a target for antiviral drugs such as acyclovir, is not essential for lytic replication yet evidently is required at the secondary site for replication and some phase of latent infection. To determine the specific stage in viral pathogenesis at which this enzyme is required, we constructed virus deletion mutants that were acyclovir resistant and exhibited no detectable thymidine kinase activity. After corneal inoculation of mice, the mutants replicated to high titers in the eye but were severely impaired for acute replication in trigeminal ganglia and failed to reactivate from ganglia upon cocultivation with permissive cells. Nevertheless, latency-associated transcripts were expressed in neuronal nuclei of ganglia from mutantinfected mice and superinfection of the ganglia with a second virus rescued the latent mutant virus. Thus, contrary to a widely accepted hypothesis, the thymidine kinase-negative mutants established latent infections, implying that neither thymidine kinase activity nor ganglionic replication is necessary for establishment of latency. Rather, thymidine kinase appears to be necessary for reactivation from latency. These results suggest that acyclovir-resistant viruses could establish latent infections in clinical settings and have implications for the use of genetically engineered herpesviruses to deliver foreign genes to neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.