Nitrates from agricultural runoff and industrial waste streams are a notorious waste product and hazardous pollutant. Traditional electrochemical water remediation approaches aim to solve this problem by converting nitrates to environmentally benign N2 while minimizing the production of environmentally hazardous side products such as ammonia and nitrous oxide in a process known as “denitrification”. We modify this concept and outline an opportunity to optimize the conversion of nitrates into ammonia, which is also a key commodity product used as a fertilizer, potential fuel, and chemical precursor. The electrochemical conversion of nitrates to ammonia recycles the fixed nitrogen and offers an appealing and supplementary alternative to the energy- and resource-intensive Haber-Bosch process. In this study, we investigated the effect of varying electrochemical conditions (pH, nitrate concentration, and applied potential) on the selective reduction of nitrate to ammonia at a titanium cathode. We observed that high concentrations of both protons and nitrate ions are needed to achieve high selectivity, reaching a peak of 82% Faradaic efficiency to ammonia at an applied potential of −1 V versus RHE and a partial current density to NH3 of −22 mA/cm2, using 0.4 M [NO3 –] at pH ∼0.77. The Ti electrode, as a poor hydrogen evolution catalyst with notable corrosion resistance, provides a large window of operating conditions to achieve high selectivity in the reduction of nitrate anions. Stability of the system was evaluated, and we found a high Faradaic efficiency throughout the course of an 8 h experiment. After electrochemical testing, titanium hydride was observed at the cathode surface. We also show a preliminary technoeconomic study, indicating that it may be feasible to employ an electrochemical strategy for the production of ammonium nitrate.
Ni,N‐doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen‐coordinated, single Ni atom active sites. However, experimentally confirming Ni−N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile‐derived Ni,N‐doped carbon electrocatalysts (Ni‐PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X‐ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square‐planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.