Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation.
Ligand flexibility is an important problem in molecular docking and virtual screening. To address this challenge, we investigate a hierarchical pre-organization of multiple conformations of small molecules. Such organization of pre-calculated conformations removes the exploration of ligand conformational space from the docking calculation and allows for concise representation of what can be thousands of conformations. The hierarchy also recognizes and prunes incompatible conformations early in the calculation, eliminating redundant calculations of fit. We investigate the method by docking the MDL Drug Data Report (MDDR), an annotated database of 100,000 molecules, into apo and holo forms of seven unrelated targets. This annotated database allows us to track the ranking of tens to hundreds of annotated ligands in each of the docking systems. The binding sites and database are prepared in an automated fashion in an attempt to remove some human bias from the calculations. Many thousands of explicit and implicit ligand conformations may be docked in calculations not much longer than required for single conformer docking. As long as internal energies are not considered, recombination with the hierarchy is additive as the number of degrees of freedom is increased. Molecules with even millions of conformations can be docked in a few minutes on a single desktop computer.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side-chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near-native complexes be distinguished from non-native complexes? Results from seven test systems suggest that the precalculated ensembles do include side-chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near-native complexes and also non-native complexes. When docked against the bound conformations of the receptors, the near-native complexes of the unbound ligand were always distinguishable from the non-native complexes. When docked against the unbound conformations of the receptors, the near-native dockings could usually, but not always, be distinguished from the non-native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near-native and non-native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near-native and non-native complexes. Allowing for receptor flexibility may further extend these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.