Tears on the bursal and articular sides of the rotator cuff tendons are known to behave differently and strain is thought to play a role in this difference. This study investigates the effect of tear location on the changes in three strain measurements (grip-to-grip, insertion, and mid-substance tissue) in a sheep infraspinatus tendon model during axial loading. We introduced a 14 mm wide defect near the insertion from either the articular or bursal side of the tendon to three depths (3 mm, 7 mm & full) progressively. For each condition, tendons were sinusoidally stretched (4% at 0.5 Hz) while insertion and mid-substance strains were tracked with surface markers. For a fixed load, grip-to-grip strain increased significantly compared to intact for both cuts. Insertion strain increased significantly for the bursal-side defect immediately but not for the articular-side until the 66% cut. Mid-substance tissue strain showed no significant change for partial thickness articular-side defects and a significant decrease for bursal-side defects after the 66% cut. All full thickness cuts exhibited negligible mid-substance tissue strain change. Our results suggest that the tendon strain patterns are more sensitive to defects on the bursal side, and that partial thickness tears tend to induce localized strain concentrations in regions adjacent to the damaged tissue.
Acoustoelastic (AE) ultrasound image analysis is a promising non-invasive approach that uses load-dependent echo intensity changes to characterize stiffness of tendinous tissue. The purpose of this study was to investigate whether AE can detect localized changes in tendon stiffness due to partial and full-thickness tendon tears. Ovine infraspinatus tendons with different levels of damage (Intact, 33%, 66% and full thickness cuts initiated on the articular and bursal sides) were cyclically loaded in a mechanical testing system while cine ultrasound images were recorded. The load-induced changes in echo intensity on the bursal and articular side of the tendon were determined. Consistent with AE theory, the undamaged tendons exhibited an increase in echo intensity with tendon loading, reflecting the strain-stiffening behavior of the tissue. In the intact condition, the articular region demonstrated a significantly greater increase in echo intensity during loading than the bursal region. Cuts initiated on the bursal side resulted in a progressive decrease in echo intensity of the adjacent tissue, likely reflecting the reduced load transmission through that region. However, image intensity information was less sensitive for identifying load transmission changes that result from partial thickness cuts initiated on the articular side. We conclude that AE approaches may be useful to quantitatively assess load-dependent changes in tendon stiffness, and that disruption of AE behavior may be indicative of substantial tendon damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.