1. The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows
Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third-through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third-through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales. disturbance ͉ natural flow regime ͉ ecosystem sustainability ͉ environmental template
Hydrochory, or the passive dispersal of organisms by water, is an important means of propagule transport, especially for plants. During recent years, knowledge about hydrochory and its ecological consequences has increased considerably and a substantial body of literature has been produced. Here, we review this literature and define the state of the art of the discipline. A substantial proportion of species growing in or near water have propagules (fruits, seeds or vegetative units) able to disperse by water, either floating, submerged in flowing water, or with the help of floating vessels. Hydrochory can enable plants to colonize sites out of reach with other dispersal vectors, but the timing of dispersal and mechanisms of establishment are important for successful establishment. At the population level, hydrochory may increase the effective size and longevity of populations, and control their spatial configuration. Hydrochory is also an important source of species colonizing recruitment-limited riparian and wetland communities, contributing to maintenance of community species richness. Dispersal by water may even influence community composition in different landscape elements, resulting in landscape-level patterns. Genetically, hydrochory may reduce spatial aggregation of genetically related individuals, lead to high gene flow among populations, and increase genetic diversity in populations receiving many propagules. Humans have impacted hydrochory in many ways. For example, dams affect hydrochory by reducing peak flows and hence dispersal capacity, altering the timing of dispersal, and by presenting physical barriers to dispersal, with consequences for riverine plant communities. Hydrochory has been inferred to be an important vector for the spread of many invasive species, but there is also the potential for enhancing ecosystem restoration by improving or restoring water dispersal pathways. Climate change may alter the role of hydrochory by modifying the hydrology of water-bodies as well as conditions for propagule release and plant colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.