Sonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with quantitative protein analysis, we measure allele specific changes in SHH mRNA and concentration of SHH protein over time. This confirms that the Slk ZRS enhancer mutation causes increased SHH expression in the posterior leg mesenchyme. Secondary consequences of this increased SHH signalling include increased FGF pathway signalling and growth as predicted by the SHH/GREM1/FGF feedback loop and the Growth/Morphogen models. Manipulation of Hedgehog, FGF signalling and growth demonstrate that anterior-ectopic expression of SHH and induction of preaxial polydactyly is induced secondary to increased SHH signalling and Hedgehog-dependent growth directed from the posterior limb. We predict that increased long range SHH signalling acts in combination with changes in activation of SHH transcription from the Slk ZRS allele. Through analysis of the temporal dynamics of anterior SHH induction we predict a gene regulatory network which may contribute to activation of anterior SHH expression from the Slk ZRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.