We study a class of permutation tests of the randomness of a collection of Bernoulli sequences and their application to analyses of the human tendency to perceive streaks of consecutive successes as overly representative of positive dependence—the hot hand fallacy. In particular, we study permutation tests of the null hypothesis of randomness (i.e., that trials are i.i.d.) based on test statistics that compare the proportion of successes that directly follow k consecutive successes with either the overall proportion of successes or the proportion of successes that directly follow k consecutive failures. We characterize the asymptotic distributions of these test statistics and their permutation distributions under randomness, under a set of general stationary processes, and under a class of Markov chain alternatives, which allow us to derive their local asymptotic power. The results are applied to evaluate the empirical support for the hot hand fallacy provided by four controlled basketball shooting experiments. We establish that substantially larger data sets are required to derive an informative measurement of the deviation from randomness in basketball shooting. In one experiment, for which we were able to obtain data, multiple testing procedures reveal that one shooter exhibits a shooting pattern significantly inconsistent with randomness – supplying strong evidence that basketball shooting is not random for all shooters all of the time. However, we find that the evidence against randomness in this experiment is limited to this shooter. Our results provide a mathematical and statistical foundation for the design and validation of experiments that directly compare deviations from randomness with human beliefs about deviations from randomness, and thereby constitute a direct test of the hot hand fallacy.
This paper studies the estimation of long-term treatment effects though the combination of short-term experimental and long-term observational datasets. In particular, we consider settings in which only short-term outcomes are observed in an experimental sample with exogenously assigned treatment, both short-term and long-term outcomes are observed in an observational sample where treatment assignment may be confounded, and the researcher is willing to assume that the causal relationships between treatment assignment and the short-term and long-term outcomes share the same unobserved confounding variables in the observational sample. We derive the efficient influence function for the average causal effect of treatment on longterm outcomes in each of the models that we consider and characterize the corresponding asymptotic semiparametric efficiency bounds.
This paper concerns the construction of confidence intervals in standard seroprevalence surveys. In particular, we discuss methods for constructing confidence intervals for the proportion of individuals in a population infected with a disease using a sample of antibody test results and measurements of the test's false positive and false negative rates. We begin by documenting erratic behavior in the coverage probabilities of standard Wald and percentile bootstrap intervals when applied to this problem. We then consider two alternative sets of intervals constructed with test inversion. The first set of intervals are approximate, using either asymptotic or bootstrap approximation to the finite-sample distribution of a chosen test statistic. We consider several choices of test statistic, including maximum likelihood estimators and generalized likelihood ratio statistics. We show with simulation that, at empirically relevant parameter values and sample sizes, the coverage probabilities for these intervals are close to their nominal level and are approximately equi-tailed. The second set of intervals are shown to contain the true parameter value with probability at least equal to the nominal level, but can be conservative in finite samples. To conclude, we outline the application of the methods that we consider to several related problems, and we provide a set of practical recommendations.
We study a class of tests of the randomness of Bernoulli sequences and their application to analyses of the human tendency to perceive streaks as overly representative of positive dependence-the hot hand fallacy. In particular, we study tests of randomness (i.e., that trials are i.i.d.) based on test statistics that compare the proportion of successes that directly follow k consecutive successes with either the overall proportion of successes or the proportion of successes that directly follow k consecutive failures. We derive the asymptotic distributions of these test statistics and their permutation distributions under randomness and under general models of streakiness, which allows us to evaluate their local asymptotic power. The results are applied to revisit tests of the hot hand fallacy implemented on data from a basketball shooting experiment, whose conclusions are disputed by Gilovich, Vallone, and Tversky (1985) and Miller and Sanjurjo (2018a). We establish that the tests are insufficiently powered to distinguish randomness from alternatives consistent with the variation in NBA shooting percentages. While multiple testing procedures reveal that one shooter can be inferred to exhibit shooting significantly inconsistent with randomness, we find that participants in a survey of basketball fans over-estimate an average player's streakiness, corroborating the empirical support for the hot hand fallacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.