Many important geometric estimation problems naturally take the form of synchronization over the special Euclidean group: estimate the values of a set of unknown group elements x1, . . . , xn ∈ SE(d) given noisy measurements of a subset of their pairwise relative transforms x −1 i xj. Examples of this class include the foundational problems of pose-graph simultaneous localization and mapping (SLAM) (in robotics), camera motion estimation (in computer vision), and sensor network localization (in distributed sensing), among others. This inference problem is typically formulated as a nonconvex maximum-likelihood estimation that is computationally hard to solve in general. Nevertheless, in this paper we present an algorithm that is able to efficiently recover certifiably globally optimal solutions of the special Euclidean synchronization problem in a non-adversarial noise regime. The crux of our approach is the development of a semidefinite relaxation of the maximum-likelihood estimation whose minimizer provides an exact MLE so long as the magnitude of the noise corrupting the available measurements falls below a certain critical threshold; furthermore, whenever exactness obtains, it is possible to verify this fact a posteriori, thereby certifying the optimality of the recovered estimate. We develop a specialized optimization scheme for solving large-scale instances of this semidefinite relaxation by exploiting its low-rank, geometric, and graph-theoretic structure to reduce it to an equivalent optimization problem defined on a low-dimensional Riemannian manifold, and then design a Riemannian truncated-Newton trust-region method to solve this reduction efficiently. Finally, we combine this fast optimization approach with a simple rounding procedure to produce our algorithm, SE-Sync. Experimental evaluation on a variety of simulated and real-world pose-graph SLAM datasets shows that SE-Sync is capable of recovering certifiably globally optimal solutions when the available measurements are corrupted by noise up to an order of magnitude greater than that typically encountered in robotics and computer vision applications, and does so more than an order of magnitude faster than the Gauss-Newton-based approach that forms the basis of current state-of-the-art techniques. * This report is an extended version of a paper presented at the 12 th International Workshop on the Algorithmic Foundations of Robotics [70].
State-of-the-art techniques for simultaneous localization and mapping (SLAM) employ iterative nonlinear optimization methods to compute an estimate for robot poses. While these techniques often work well in practice, they do not provide guarantees on the quality of the estimate. This paper shows that Lagrangian duality is a powerful tool to assess the quality of a given candidate solution. Our contribution is threefold. First, we discuss a revised formulation of the SLAM inference problem. We show that this formulation is probabilistically grounded and has the advantage of leading to an optimization problem with quadratic objective. The second contribution is the derivation of the corresponding Lagrangian dual problem. The SLAM dual problem is a (convex) semidefinite program, which can be solved reliably and globally by off-the-shelf solvers. The third contribution is to discuss the relation between the original SLAM problem and its dual. We show that from the dual problem, one can evaluate the quality (i.e., the suboptimality gap) of a candidate SLAM solution, and ultimately provide a certificate of optimality. Moreover, when the duality gap is zero, one can compute a guaranteed optimal SLAM solution from the dual problem, circumventing non-convex optimization. We present extensive (real and simulated) experiments supporting our claims and discuss practical relevance and open problems.
Abstract-Many point estimation problems in robotics, computer vision and machine learning can be formulated as instances of the general problem of minimizing a sparse nonlinear sum-ofsquares objective function. For inference problems of this type, each input datum gives rise to a summand in the objective function, and therefore performing online inference corresponds to solving a sequence of sparse nonlinear least-squares minimization problems in which additional summands are added to the objective function over time. In this paper we present Robust Incremental least-Squares Estimation (RISE), an incrementalized version of the Powell's Dog-Leg numerical optimization method suitable for use in online sequential sparse least-squares minimization. As a trust-region method, RISE is naturally robust to objective function nonlinearity and numerical ill-conditioning, and is provably globally convergent for a broad class of inferential cost functions (twice-continuously differentiable functions with bounded sublevel sets). Consequently, RISE maintains the speed of current state-of-the-art online sparse least-squares methods while providing superior reliability.
Abstract-The feature-based graphical approach to robotic mapping provides a representationally rich and computationally efficient framework for an autonomous agent to learn a model of its environment. However, this formulation does not naturally support long-term autonomy because it lacks a notion of environmental change; in reality, "everything changes and nothing stands still," and any mapping and localization system that aims to support truly persistent autonomy must be similarly adaptive. To that end, in this paper we propose a novel feature-based model of environmental evolution over time. Our approach is based upon the development of an expressive probabilistic generative feature persistence model that describes the survival of abstract semi-static environmental features over time. We show that this model admits a recursive Bayesian estimator, the persistence filter, that provides an exact online method for computing, at each moment in time, an explicit Bayesian belief over the persistence of each feature in the environment. By incorporating this feature persistence estimation into current state-of-the-art graphical mapping techniques, we obtain a flexible, computationally efficient, and information-theoretically rigorous framework for lifelong environmental modeling in an ever-changing world.
Abstract-Modern approaches to simultaneous localization and mapping (SLAM) formulate the inference problem as a highdimensional but sparse nonconvex M-estimation, and then apply general first-or second-order smooth optimization methods to recover a local minimizer of the objective function. The performance of any such approach depends crucially upon initializing the optimization algorithm near a good solution for the inference problem, a condition that is often difficult or impossible to guarantee in practice. To address this limitation, in this paper we present a formulation of the SLAM M-estimation with the property that, by expanding the feasible set of the estimation program, we obtain a convex relaxation whose solution approximates the globally optimal solution of the SLAM inference problem and can be recovered using a smooth optimization method initialized at any feasible point. Our formulation thus provides a means to obtain a high-quality solution to the SLAM problem without requiring high-quality initialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.