The 20S proteasome functions in protein degradation in eukaryotes together with the 19S ATPases or in archaea with the homologous PAN ATPase complex. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X motif (HbYX). We show that these residues are essential for PAN to associate with the 20S and open its gated channel for substrate entry. Upon ATP binding, these C-terminal residues bind to pockets between the 20S's alpha subunits. Seven-residue or longer peptides from PAN's C terminus containing the HbYX motif also bind to these sites and induce gate opening in the 20S. Gate opening could be induced by C-terminal peptides from the 19S ATPase subunits, Rpt2, and Rpt5, but not by ones from PA28/26, which lack the HbYX motif and cause gate opening by distinct mechanisms. C-terminal residues in the 19S ATPases were also shown to be critical for gating and stability of 26S proteasomes. Thus, the C termini of the proteasomal ATPases function like a "key in a lock" to induce gate opening and allow substrate entry.
It has been discovered that proteasome inhibitors are able to induce tumor growth arrest or cell death and that tea consumption is correlated with cancer prevention. Here, we show that ester bond-containing tea polyphenols, such as (؊)؊epigallocatechin-3-gallate (EGCG), potently and specifically inhibit the chymotrypsin-like activity of the proteasome in vitro (IC 50 ؍ 86 -194 nM) and in vivo (1-10 M) at the concentrations found in the serum of green tea drinkers. Atomic orbital energy analyses and high performance liquid chromatography suggest that the carbon of the polyphenol ester bond is essential for targeting, thereby inhibiting the proteasome in cancer cells. This inhibition of the proteasome by EGCG in several tumor and transformed cell lines results in the accumulation of two natural proteasome substrates, p27Kip1 and IB-␣, an inhibitor of transcription factor NF-B, followed by growth arrest in the G 1 phase of the cell cycle. Furthermore, compared with their simian virus-transformed counterpart, the parental normal human fibroblasts were much more resistant to EGCG-induced p27Kip1 protein accumulation and G 1 arrest. Our study suggests that the proteasome is a cancer-related molecular target of tea polyphenols and that inhibition of the proteasome activity by ester bond-containing polyphenols may contribute to the cancer-preventative effect of tea.
Substrates enter the cylindrical 20S proteasome through a gated channel that is regulated by the ATPases in the 19S regulatory particle in eukaryotes or the homologous PAN ATPase complex in archaea. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X (HbYX) motif that triggers gate opening upon ATP binding. Using cryo-electron microscopy, we identified the sites in the archaeal 20S where PAN's C-terminal residues bind and determined the structures of the gate in its closed and open forms. Peptides containing the HbYX motif bind to 20S in the pockets between neighboring alpha subunits where they interact with conserved residues required for gate opening. This interaction induces a rotation in the alpha subunits and displacement of a reverse-turn loop that stabilizes the open-gate conformation. This mechanism differs from that of PA26/28, which lacks the HbYX motif and does not cause alpha subunit rotation. These findings demonstrated how the ATPases' C termini function to facilitate substrate entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.