Approved for public release; distribution unlimited. ii REPORT DOCUMENTATION PAGEForm Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. REPORT DATE (DD-MM-YYYY) February 20132. REPORT TYPE ARL-TR-6343 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) SPONSOR/MONITOR'S REPORT NUMBER(S) DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution unlimited. SUPPLEMENTARY NOTES ABSTRACTPerforming mechanical characterization of novel structural materials and accounting for the types of failures observed and the heterogeneous nature of fiber-reinforced composites (FRCs) require non-contact strain measurements such as Digital Image Correlation (DIC), a photogrammetric technique that relies on a series of digital images taken during mechanical testing to calculate displacement within a local field. This work assesses the applicability of DIC in determining strains in thick fabric composites by examining two different engineering strain measurement methods available in DIC: (1) the average strain of the full strain field of the tensile specimen and (2) the strain between two gauge points. The results indicate that the difference between the two strain measurement methods is minimal until near the point of failure. However, the full strain fields of the front and back surfaces of the tensile specimen differed significantly during the initial loading. The usage of a single camera DIC system that records only one side of specimen does not accurately capturing bending behavior in the specimen and may inaccurately report the mechanical properties. The DIC technique has to be applied properly in mechanical testing to assure compliance with American Society for Testing and Materials (ASTM) testing methods and other test standards. iii SUBJECT TERMS
Approved for public release; distribution is unlimited.ii REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
This report documents the efforts involved in determining the feasibility of substituting aluminum components with organic matrix composites for application to the Advanced Integrated Collective Protection System (AICPS) container. The AICPS container houses an air filtration/power generation system capable of providing a temperature-controlled air supply free of nuclear, biological, and chemical (NBC) contaminants to tactical vehicles and shelters. This study was undertaken to investigate the potential of enhancing the performance of the AICPS container in terms of portability (weight), economy (cost and life cycle), detection, and reliability (noise and electromagnetic impulse/interference protection). The objective was to determine if composite materials would enhance system performance and, if so, to what degree and at what cost. Efforts to maintain original system geometry and performance specifications resulted in two approaches. Results indicate that the application of certain composites to the AICPS container would enhance performance in terms of weight. However, the increased cost of both the raw materials and of manufacturing the structure, subject to the geometric constraints, was considered inefficient. A significant increase in weight savings could be achieved, at a more reasonable cost, if geometric constraints were eliminated to allow for rearranging the distribution and orientation of internal components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.