Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences.
Olfactory function is highly correlated with dopamine transporter imaging abnormalities in early Parkinson disease (PD). Further studies are warranted to determine whether changes over time in these two measures are also correlated in early PD.
We examined whether effects of prior experience are mediated by distinct brain processes from those processing current stimulus features. We recorded event-related potentials (ERPs) during an auditory stream segregation task that presented an adaptation sequence with a small, intermediate, or large frequency separation between low and high tones (Deltaf), followed by a test sequence with intermediate Deltaf. Perception of two streams during the test was facilitated by small prior Deltaf and by prior perception of two streams and was accompanied by more positive ERPs. The scalp topography of these perception-related changes in ERPs was different from that observed for ERP modulations due to increasing the current Deltaf. These results reveal complex interactions between stimulus-driven activity and temporal-context-based processes and suggest a complex set of brain areas involved in modulating perception based on current and previous experience.
During repeating sequences of low (A) and high (B) tones, perception of two separate streams ("streaming") increases with greater frequency separation (Δƒ) between the A and B tones; in contrast, a prior context with large Δƒ results in less streaming during a subsequent test pattern. The purpose of the present study was to investigate what aspects of the context pattern are necessary for this context effect to occur. Simply changing the B-tone frequency without an alternating A tone present was not sufficient to cause the effect of prior Δƒ, but rather a melodic change between A and B tones was necessary. We further investigated the extent to which the context and test patterns needed to have similar rhythms (xxx-xxx-) and melodies (up-down-flat-up-down), and found that a maximal prior-Δƒ effect occurred when the rhythmic patterns of the context and test were similar, regardless of the melodic structure. Thus, the effect of prior Δƒ on streaming depended on the presence of (1) at least one melodic change in the context, and (2) similar rhythmic patterns in the context and test.
Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.