Questions on the embryonic origin and developmental significance of the epicardium did not receive much recognition for more than a century. It was generally thought that the epicardium was derived from the outermost layer of the primitive myocardium of the early embryonic heart tube. During the past few years, however, there has been an increasing interest in the development of the epicardium. This was caused by a series of new embryological data. The first data showed that the epicardium did not derive from the primitive myocardium but from a primarily extracardiac primordium, called the proepicardial serosa. Subsequent data then suggested that the proepicardial serosa and the newly formed epicardium provided nearly all cellular elements of the subepicardial and intermyocardial connective tissue, and of the coronary vasculature. Recent data even suggest important modulatory roles of the epicardium and of other proepicardium-derived cells in the differentiation of the embryonic myocardium and cardiac conduction system. The present paper reviews our current knowledge on the origin and embryonic development of the epicardium.
It has been proposed that the subepicardial mesenchymal cells (SEMC) originate from the primitive epicardium and also from migration of extracardiac mesenchyme from the liver area. We have studied the possibility of an origin of SEMC through transformation of the proepicardial mesothelium, as well as the potential of the early proepicardium to generate epicardium and SEMC in quail-chick chimeras. The study was carried out in quail and chick embryos between HH16 and HH29 stages. Most proepicardial cells, mesothelial as well as mesenchymal, were cytokeratin and vimentin immunoreactive, suggesting a cytoskeletal shift from the epithelial to the mesenchymal type. Furthermore, we immunolocated, in the proepicardial mesothelium, three proteins specifically expressed during the endothelial-mesenchymal transition of the endocardial cushions, namely the JB3/fibrillin-associated antigen, the ES/130 protein and the smooth muscle cell alpha-actin. Grafts of proepicardial tissue from HH16-17 quail embryos into chick embryos of the same age originated large areas of donor-derived epicardium, including mesothelial, mesenchymal, and vascular cells. The donor-derived primitive epicardium showed segment-specific features, being squamous and adhered to the myocardium on the atrial wall and showing morphological signs of ingression in the atrioventricular groove and outflow tract. These morphological traits together with the distribution of vimentin, the ES/130 protein, and the JB3/fibrillin-associated antigen suggested a localized transformation of some epicardial mesothelial cells into mesenchyme. Most of the donor-derived cells, mesothelial and mesenchymal, showed the vascular marker QH1, which frequently colocalized with cytokeratin. Heterotopic grafts of quail splanchnopleura into the pericardial cavity of chick embryos originated a squamous, epicardial-like, cytokeratin-immunoreactive cell layer on the heart surface, as well as a few QH1(+) subepicardial and intramyocardial cells. The results suggest that a substantial part of the subepicardial mesenchyme, including the progenitors of the cardiac vessels, originates from the transformation of proepicardial and epicardial mesothelial cells into mesenchyme, and that the epicardial transition could be driven by a segment-specific myocardial signal.
Previous studies of knock-out mouse embryos have shown that the Wilms' tumor suppressor gene (Wt1) is indispensable for the development of kidneys, gonads, heart, adrenals and spleen. Using OPT (Optical Projection Tomography) we have found a new role for Wt1 in mouse liver development. In the absence of Wt1, the liver is reduced in size, and shows lobing abnormalities. In normal embryos, coelomic cells expressing Wt1, GATA-4, RALDH2 and RXRalpha delaminate from the surface of the liver, intermingle with the hepatoblasts and incorporate to the sinusoidal walls. Some of these cells express desmin, suggesting a contribution to the stellate cell population. Other cells, keeping high levels of RXRalpha immunoreactivity, are negative for stellate or smooth muscle cell markers. However, coelomic cells lining the liver of Wt1-null embryos show decreased or absent RALDH2 expression, the population of cells expressing high levels of RXRalpha is much reduced and the proliferation of hepatoblasts and RXRalpha-positive cells is significantly decreased. On the other hand, the expression of smooth muscle cell specific alpha-actin increases throughout the liver, suggesting an accelerated and probably anomalous differentiation of stellate cell progenitors. We describe a similar retardation of liver growth in RXRalpha-null mice as well as in chick embryos after inhibition of retinoic acid synthesis. We propose that Wt1 expression in cells delaminating from the coelomic epithelium is essential for the expansion of the progenitor population of liver stellate cells and for liver morphogenesis. Mechanistically, at least part of this effect is mediated via the retinoic acid signaling pathway.
Assessment and management of Atlantic bluefin tuna Thunnus thynnus populations is hindered by our lack of knowledge regarding trans-Atlantic movement and connectivity of eastern and western populations. Here, we evaluated migratory and homing behaviors of bluefin tuna in several regions of the North Atlantic Ocean and Mediterranean Sea using chemical tags (δ 13 C and δ 18 O) in otoliths. Significant emigration of bluefin tuna from their place of origin was inferred from otolith δ 13 C and δ 18 O, with both eastern and western bluefin tuna commonly 'crossing the line' (45° W management boundary) in the Central North Atlantic Ocean and mixing with the other population. Several western migrants were also detected in Moroccan traps off the coast of Africa, indicating that trans-Atlantic movement occurs for members of the western population; however, the degree of mixing declined with proximity to the eastern spawning area (Mediterranean Sea). The origin of bluefin tuna collected at the entrance to the Strait of Gibraltar and from several regions within the Mediterranean Sea (Balearic Islands, Malta, and Sardinia) was essentially 100% eastern fish, demonstrating that natal homing is well developed by the eastern population, with western migrants rarely entering the Mediterranean Sea.
A study about the hypothetical contribution of the epicardial cells to the subepicardial mesenchyme was carried out in Syrian hamster embryos of 9-12 days post coitum (dpc) and chick embryos of 3-5 days of incubation. In the epicardium and subepicardium of these embryos we have immunolocated the proteins cytokeratin (CK), vimentin (VIM), fibronectin (FN), and two antigens related to the transformation of endocardial cells into valvuloseptal mesenchyme, ES/130 and JB3. In the hamster embryos, CK ؉ subepicardial mesenchymal cells (SEMC) were apparently migrating from the primitive epicardium from 9.5 dpc at the atrioventricular (AV) groove and proximal outflow tract (OFT). The morphological signs of delamination extended by 11 dpc to the epicardium of the interventricular groove and the dorsal part of the ventricle. The relative abundance of the CK ؉ SEMC decreased in embryos of 12 dpc. VIM colocalized with CK in most SEMC, and in some epicardial mesothelial cells, mainly at the areas of delamination. CK immunoreactivity was also found in some early subepicardial capillaries. Similar observations were made in the chick embryos studied. The immunoreactive patterns obtained at the subepicardium with anti-FN, ES/130, and JB3 antibodies were similar to those reported in the areas of endothelial transformation of the endocardial cushions. We suggest that these observations are compatible with an epithelial-mesenchymal transformation involving the epicardial mesothelium and originating at least a part of the SEMC. Dev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.