A la hora de resolver tareas de cómputo intensivo de manera distribuida y paralela, habitualmente se utilizan recursos de hardware x86 (CPU/GPU) e infraestructura especializada (Grid, Cluster, Nube) para lograr un alto rendimiento. En sus inicios los procesadores, coprocesadores y chips x86 fueron desarrollados para resolver problemas complejos sin tener en cuenta su consumo energético. Dado su impacto directo en los costos y el medio ambiente, optimizar el uso, refrigeración y gasto energético, así como analizar arquitecturas alternativas, se convirtió en una preocupación principal de las organizaciones. Como resultado, las empresas e instituciones han propuesto diferentes arquitecturas para implementar las características de escalabilidad, flexibilidad y concurrencia. Con el objetivo de plantear una arquitectura alternativa a los esquemas tradicionales, en esta tesis se propone ejecutar las tareas de procesamiento reutilizando las capacidades ociosas de los dispositivos móviles. Estos equipos integran procesadores ARM los cuales, en contraposición a las arquitecturas tradicionales x86, fueron desarrollados con la eficiencia energética como pilar fundacional, ya que son mayormente alimentados por baterías. Estos dispositivos, en los últimos años, han incrementado su capacidad, eficiencia, estabilidad, potencia, así como también masividad y mercado; mientras conservan un precio, tamaño y consumo energético reducido. A su vez, cuentan con lapsos de ociosidad durante los períodos de carga, lo que representa un gran potencial que puede ser reutilizado. Para gestionar y explotar adecuadamente estos recursos, y convertirlos en un centro de datos de procesamiento intensivo; se diseñó, desarrolló y evaluó una plataforma distribuida, colaborativa, elástica y de bajo costo basada en una arquitectura compuesta por microservicios y contenedores orquestados con Kubernetes en ambientes de Nube y local, integrada con herramientas, metodologías y prácticas DevOps. El paradigma de microservicios permitió que las funciones desarrolladas sean fragmentadas en pequeños servicios, con responsabilidades acotadas. Las prácticas DevOps permitieron construir procesos automatizados para la ejecución de pruebas, trazabilidad, monitoreo e integración de modificaciones y desarrollo de nuevas versiones de los servicios. Finalmente, empaquetar las funciones con todas sus dependencias y librerías en contenedores ayudó a mantener servicios pequeños, inmutables, portables, seguros y estandarizados que permiten su ejecución independiente de la arquitectura subyacente. Incluir Kubernetes como Orquestador de contenedores, permitió que los servicios se puedan administrar, desplegar y escalar de manera integral y transparente, tanto a nivel local como en la Nube, garantizando un uso eficiente de la infraestructura, gastos y energía. Para validar el rendimiento, escalabilidad, consumo energético y flexibilidad del sistema, se ejecutaron diversos escenarios concurrentes de transcoding de video. De esta manera se pudo probar, por un lado, el comportamiento y rendimiento de diversos dispositivos móviles y x86 bajo diferentes condiciones de estrés. Por otro lado, se pudo mostrar cómo a través de una carga variable de tareas, la arquitectura se ajusta, flexibiliza y escala para dar respuesta a las necesidades de procesamiento. Los resultados experimentales, sobre la base de los diversos escenarios de rendimiento, carga y saturación planteados, muestran que se obtienen mejoras útiles sobre la línea de base de este estudio y que la arquitectura desarrollada es lo suficientemente robusta para considerarse una alternativa escalable, económica y elástica, respecto a los modelos tradicionales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.