RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some nonglutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late RP photoreceptor transplantation attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function.
The long-term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were distinguished based on dendritic stratification in either the inner or outer portion of the inner plexiform layer (IPL) . Variation in dendritic field size and cell density with eccentricity was confirmed, and dendritic spines, a new feature of melanopsin cells, were described. The spines were the sites of input from DB6 diffuse bipolar cell axon terminals to the inner stratifying type of melanopsin cells. The outer stratifying melanopsin type received inputs from DB6 bipolar cells via the DB6 cell’s bistratified outer axonal processes. Outer stratifying melanopsin cells also received inputs from axon terminals of dopaminergic amacrine cells. On the outer stratifying melanopsin cells, ribbon synapses from bipolar cells and conventional synapses from amacrine cells were identified in electron-microscopic immunolabeling experiments. Both inner and outer stratifying melanopsin cell types were retrogradely labeled following tracer injection in the lateral geniculate nucleus (LGN). In addition, a method for targeting melanopsin cells for intracellular injection using their intrinsic fluorescence was developed. This technique was used to demonstrate that melanopsin cells were tracer-coupled to amacrine cells and would be applicable to electrophysiological experiments in the future.
A distinct subpopulation of bipolar cells in macaque monkey retina was labeled with antisera that recognize glycine-extended cholecystokinin precursors. The labeled bipolar cells were found throughout the retina and had dendrites contacting a subpopulation of cone pedicles and axons ramifying in the fifth stratum of the inner plexiform layer. Several lines of evidence indicate that the labeled bipolar cells are a single type despite some variations in their morphology. First, the density of perikarya and their diameters varied continuously as a function of eccentricity. Second, the positions of perikarya within the inner nuclear layer and the level at which the axons branched in the inner plexiform layer were constant at all eccentricities. Bipolar cells with similar morphology have been described previously as "blue cone bipolar cells" (Mariani, 1984b), but there was no direct evidence that this was the case. In this study, we show by light microscopy that labeled bipolar cells have dendrites ending exclusively upon presumptive blue cones labeled by Procion black dye. All blue cones were contacted by labeled bipolar cells, and virtually all bipolar cells contacted blue cones, the only exceptions being in regions where blue cones had been lost. Approximately 20% more labeled bipolar cells than blue cones were found at every eccentricity; thus, connections between blue cones and labeled bipolar cells were not strictly one to one. The mean number of cones presynaptic to each bipolar cell was 1.2, and the mean number of bipolar cells postsynaptic to each cone was 1.8. By an electron microscopic study of labeled bipolar cell dendrites, we determined that they became central elements of ribbon synapses in blue cones. Some of their ribbon synapses were unusual: in one type, a single, large labeled dendrite was postsynaptic to two or more ribbons, while in the other type, ribbons had two or more central elements. The presence of these invaginating contacts and the axonal terminals in the proximal inner plexiform layer suggest that the labeled bipolar cells depolarize to short-wavelength stimuli and function to relay information from blue cones to the inner plexiform layer. There were also other, unlabeled bipolar cell dendrites that received inputs from blue cones at basal junctions and triad-associated flat contacts, which suggests that there are additional types of bipolar cells conveying information from short-wavelength cones in the primate retina.
In primates, the retinal ganglion cells that project to the magnocellular layers of the lateral geniculate nucleus have distinctive responses to light, and one of these has been identified morphologically as the parasol ganglion cell. To investigate their synaptic connections, we injected parasol cells with Neurobiotin in lightly fixed baboon retinas. The five ON-center cells we analyzed by electron microscopy received approximately 20% of their input from bipolar cells. The major synaptic input to parasol cells was from amacrine cells via conventional synapses and, in this respect, they resembled alpha ganglion cells of the cat retina. We also found the gap junctions between amacrine cells and parasol ganglion cells that had been predicted from tracer-coupling experiments. To identify the presynaptic amacrine cells, ON-center parasol cells were injected with Neurobiotin and Lucifer yellow in living macaque retinas, which were then fixed and labeled by immunofluorescence. Two kinds of amacrine cells were filled with Neurobiotin via gap junctions: a large, polyaxonal cell containing cholecystokinin and a smaller one without cholecystokinin. There were also appositions between cholecystokinin-containing amacrine cell processes and parasol cell dendrites. Cholinergic amacrine cell processes often followed parasol cell dendrites and made extensive contacts. In other mammals, the light responses of polyaxonal amacrine cells like these and cholinergic amacrine cells have been recorded, and the effects of acetylcholine and cholecystokinin on ganglion cells are known. Using this information, we developed a model of parasol cells that accounts for some properties of their light responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.