We summarise current state-of-the-art efficient visible-light driven heterojunction water splitting photo(electro)catalysts and describe how theoretical modelling of electronic structures at interfaces can explain their functionality.
The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an extraordinary hydrogen-evolution rate (ca. 20 000 μmol h−1 g−1 under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5 % under visible light, which is nearly an order of magnitude higher than that observed for any other existing g-C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen-evolution rate is significantly enhanced.
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.
SummaryChloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern re¯ects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.
Graphitic carbon nitride compounds were prepared by thermal treatment of C−N−H precursor mixtures (melamine C 3 N 6 H 9 , dicyandiamide C 2 N 4 H 4 ). This led to solids based on polymerized heptazine or triazine ring units linked by −N or −NH− groups. The H content decreased, and the C/ N ratio varied between 0.59 and 0.70 with preparation temperatures between 550 and 650 °C due to increased layer condensation. The UV−vis spectra exhibited a strong π−π* transition near 400 nm with a semiconductor-like band edge extending into the visible range. Samples synthesized at 600−650 °C showed an additional absorption near 500 nm that is assigned to n−π* electronic transitions involving the N lone pairs. These are forbidden for planar symmetric s-triazine or heptazine structures but become allowed as increased condensation causes distortion of the polymeric units. Photocatalysis studies showed there was no correlation between the increased visible absorption due to this feature and H 2 evolution from methanol used for the anodic reaction. In the absence of any cocatalyst the sample synthesized at 550 °C showed 1.5 μmol h −1 H 2 evolution with UV−vis irradiation, but this dropped to ∼0.23 μmol h −1 when the UV spectrum was blocked. Use of a Pt cocatalyst was required to observe H 2 evolution from the other samples. Using a more powerful (300 W) lamp led to higher H 2 production rates (31.5 μmol h −1 ) with visible illumination. We suggest the distorted N sites caused by increased polymerization result in electron/hole traps that counter the photocatalytic efficiency. Issues concerning sample porosity are also present. Photocatalytic O 2 evolution was determined for RuO 2 -coated samples using the 300 W lamp with aqueous AgNO 3 solution as the sacrificial agent. The materials all showed production rates ∼9 μmol h −1 . A highly crystalline compound containing polytriazine structural units ((C 3 N 3 ) 2 (NH) 3 •LiCl) prepared in this study did not show measurable photocatalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.