This paper proposes the application of a low-cost gas sensor array in an assistant personal robot (APR) in order to extend the capabilities of the mobile robot as an early gas leak detector for safety purposes. The gas sensor array is composed of 16 low-cost metal-oxide (MOX) gas sensors, which are continuously in operation. The mobile robot was modified to keep the gas sensor array always switched on, even in the case of battery recharge. The gas sensor array provides 16 individual gas measurements and one output that is a cumulative summary of all measurements, used as an overall indicator of a gas concentration change. The results of preliminary experiments were used to train a partial least squares discriminant analysis (PLS-DA) classifier with air, ethanol, and acetone as output classes. Then, the mobile robot gas leak detection capabilities were experimentally evaluated in a public facility, by forcing the evaporation of (1) ethanol, (2) acetone, and (3) ethanol and acetone at different locations. The positive results obtained in different operation conditions over the course of one month confirmed the early detection capabilities of the proposed mobile system. For example, the APR was able to detect a gas leak produced inside a closed room from the external corridor due to small leakages under the door induced by the forced ventilation system of the building.
The artificial replication of an olfactory system is currently an open problem. The development of a portable and low-cost artificial olfactory system, also called electronic nose or eNose, is usually based on the use of an array of different gas sensors types, sensitive to different target gases. Low-cost Metal-Oxide semiconductor (MOX) gas sensors are widely used in such arrays. MOX sensors are based on a thin layer of silicon oxide with embedded heaters that can operate at different temperature set points, which usually have the disadvantages of different volatile sensitivity in each individual sensor unit and also different crossed sensitivity to different volatiles (unspecificity). This paper presents and eNose composed by an array of 16 low-cost BME680 digital miniature sensors embedding a miniature MOX gas sensor proposed to unspecifically evaluate air quality. In this paper, the inherent variability and unspecificity that must be expected from the 16 embedded MOX gas sensors, combined with signal processing, are exploited to classify two target volatiles: ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of the 16 embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The validation results have shown an instantaneous classification success higher than 94% two days after the calibration and higher than 70% two weeks after, so the majority classification of a sequence of measures has been always successful in laboratory conditions. These first validation results and the low-power consumption of the eNose (0.9 W) enables its future improvement and its use in portable and battery-operated applications.
This paper proposes mobile robot self-localization based on an onboard 2D push-broom (or tilted-down) LIDAR using a reference 2D map previously obtained with a 2D horizontal LIDAR. The hypothesis of this paper is that a 2D reference map created with a 2D horizontal LIDAR mounted on a mobile robot or in another mobile device can be used by another mobile robot to locate its location using the same 2D LIDAR tilted-down. The motivation to tilt-down a 2D LIDAR is the direct detection of holes or small objects placed on the ground that remain undetected for a fixed horizontal 2D LIDAR. The experimental evaluation of this hypothesis has demonstrated that self-localization with a 2D push-broom LIDAR is possible by detecting and deleting the ground and ceiling points from the scan data, and projecting the remaining scan points in the horizontal plane of the 2D reference map before applying a 2D self-location algorithm. Therefore, an onboard 2D push-broom LIDAR offers self-location and accurate ground supervision without requiring an additional motorized device to change the tilt of the LIDAR in order to get these two combined characteristics in a mobile robot.
This paper presents the application of a mobile robot designed as an Assistant Personal Robot (APR) as a walk-helper tool. The hypothesis is that the height and weight of this mobile robot can be used also to provide a dynamic physical support and guidance to people while they walk. This functionality is presented as a soft walking aid at home but not as a substitute of an assistive cane or a walker device, which may withstand higher weights and provide better stability during a walking. The APR operates as a walk-helper tool by providing user interaction using the original arms of the mobile robot and by using the onboard sensors of the mobile robot in order to avoid obstacles and guide the walking through free areas. The results of the experiments conducted with the walk-helper have showed the automatic generation of smooth walking trajectories and a reduction in the number of manual trajectory corrections required to complete a walking displacement.
This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle avoidance, self-location and map creation, path-planning and path-tracking. This mobile robot has been used to develop several assistive services, but the accuracy of its path-tracking system has not been specifically evaluated until now. To this end, this paper describes the kinematics and path-planning procedure implemented in the mobile robot and empirically evaluates the accuracy of its path-tracking system that corrects the trajectory. In this paper, the information gathered by the LIDAR is registered to obtain the ground truth trajectory of the mobile robot in order to estimate the path-tracking accuracy of each experiment conducted. Circular and eight-shaped trajectories were assessed with different translational velocities. In general, the accuracy obtained in circular trajectories is within a short range, but the accuracy obtained in eight-shaped trajectories worsens as the velocity increases. In the case of the mobile robot moving at its nominal translational velocity, 0.3 m/s, the root mean square (RMS) displacement error was 0.032 m for the circular trajectory and 0.039 m for the eight-shaped trajectory; the absolute maximum displacement errors were 0.077 m and 0.088 m, with RMS errors in the angular orientation of 6.27° and 7.76°, respectively. Moreover, the external visual perception generated by these error levels is that the trajectory of the mobile robot is smooth, with a constant velocity and without perceiving trajectory corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.