Several SARS-CoV-2 variants have emerged around the world, and the appearance of other variants depends on many factors. These new variants might have different characteristics that can affect the transmissibility and death rate. The administration of vaccines against the coronavirus disease 2019 (COVID-19) started in early December of 2020 and in some countries the vaccines will not soon be widely available. For this article, we studied the impact of a new more transmissible SARS-CoV-2 strain on prevalence, hospitalizations, and deaths related to the SARS-CoV-2 virus. We studied different scenarios regarding the transmissibility in order to provide a scientific support for public health policies and bring awareness of potential future situations related to the COVID-19 pandemic. We constructed a compartmental mathematical model based on differential equations to study these different scenarios. In this way, we are able to understand how a new, more infectious strain of the virus can impact the dynamics of the COVID-19 pandemic. We studied several metrics related to the possible outcomes of the COVID-19 pandemic in order to assess the impact of a higher transmissibility of a new SARS-CoV-2 strain on these metrics. We found that, even if the new variant has the same death rate, its high transmissibility can increase the number of infected people, those hospitalized, and deaths. The simulation results show that health institutions need to focus on increasing non-pharmaceutical interventions and the pace of vaccine inoculation since a new variant with higher transmissibility, such as, for example, VOC-202012/01 of lineage B.1.1.7, may cause more devastating outcomes in the population.
Several SARS-CoV-2 variants have emerged around the world and the appearance of other variants depends on many factors. These new variants might have different characteristics that can affect the transmissibility and death rate. The administration of vaccines against the coronavirus disease 2019 (COVID-19) started in early December of 2020 and in some countries the vaccines will not soon be widely available. In this article, we study the impact of a new more transmissible SARS-CoV-2 strain on prevalence, hospitalizations, and deaths related to the SARS-CoV-2 virus. We study different scenarios regarding the transmissibility in order to provide a scientific support for public health policies and bring awareness of potential future situations related to the COVID-19 pandemic. We construct a compartmental mathematical model based on differential equations to study these different scenarios. In this way, we are able to understand how a new, more infectious strain of the virus can impact the dynamics of the COVID-19 pandemic. We study several metrics related to the possible outcomes of the COVID-19 pandemic in order to assess the impact of a higher transmissibility of a new SARS-CoV-2 strain on these metrics. We found that, even if the new variant has the same death rate, its high transmissibility can increase the number of infected people, those hospitalized, and deaths. The simulation results show that health institutions need to focus on increasing non-pharmaceutical interventions and the pace of vaccine inoculation since a new variant with higher transmissibility as, for example, VOC-202012/01 of lineage B.1.1.7, may cause more devastating outcomes in the population.
The administration of vaccines against the coronavirus disease 2019 (COVID-19) started in early December of 2020. Currently, there are only a few approved vaccines, each with different efficacies and mechanisms of action. Moreover, vaccination programs in different regions may vary due to differences in implementation, for instance, simply the availability of the vaccine. In this article, we study the impact of the pace of vaccination and the intrinsic efficacy of the vaccine on prevalence, hospitalizations, and deaths related to the SARS-CoV-2 virus. Then we study different potential scenarios regarding the burden of the COVID-19 pandemic in the near future. We construct a compartmental mathematical model and use computational methodologies to study these different scenarios. Thus, we are able to identify some key factors to reach the aims of the vaccination programs. We use some metrics related to the outcomes of the COVID-19 pandemic in order to assess the impact of the efficacy of the vaccine and the pace of the vaccine inoculation. We found that both factors have a high impact on the outcomes. However, the rate of vaccine administration has a higher impact in reducing the burden of the COVID-19 pandemic. This result shows that health institutions need to focus on increasing the vaccine inoculation pace and create awareness in the population about the importance of COVID-19 vaccines.
Grammatical Swarm is a search and optimization algorithm that belongs to the more general Grammatical Evolution family, which works with a set of solutions called individuals or particles. It uses the Particle Swarm Optimization algorithm as the search engine in the evolution of solutions. In this paper, we present a Grammatical Swarm algorithm for total energy demand estimation in a country from macroeconomic variables. Each particle in the Grammatical Swarm encodes a different model for energy demand estimation, which will be decoded by a predefined grammar. The parameters of the model are also optimized by the proposed algorithm, in such a way that the model is adjusted to a training set of real energy demand data, selecting the more appropriate variables to appear in the model. We analyze the performance of the Grammatical Swarm evolution in two real problems of one‐year ahead energy demand estimation in Spain and France. The proposal is compared with previous approaches with competitive results.
It seems that we are far from controlling COVID-19 pandemics, and, consequently, returning to a fully normal life. Until an effective vaccine is found, safety measures as the use of face masks, social distancing, washing hands regularly, etc., have to be taken. Also, the use of appropriate antivirals in order to alleviate the symptoms, to control the severity of the illness and to prevent the transmission, could be a good option that we study in this work. In this paper, we propose a computational random network model to study the transmission dynamics of COVID-19 in Spain. Once the model has been calibrated and validated, we use it to simulate several scenarios where effective antivirals are available. The results show how the early use of antivirals may significantly reduce the incidence of COVID-19 and may avoid a new collapse of the health system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.