Lysosomes are major sites for intracellular, acidic hydrolase-mediated proteolysis and cellular degradation. The export of low-molecular-weight catabolic end-products is facilitated by polytopic transmembrane proteins mediating secondary active or passive transport. A number of these lysosomal transporters, however, remain enigmatic. We present a detailed analysis of MFSD1, a hitherto uncharacterized lysosomal family member of the major facilitator superfamily. MFSD1 is not N-glycosylated. It contains a dileucine-based sorting motif needed for its transport to lysosomes. Mfsd1 knockout mice develop splenomegaly and severe liver disease. Proteomics of isolated lysosomes from Mfsd1 knockout mice revealed GLMP as a critical accessory subunit for MFSD1. MFSD1 and GLMP physically interact. GLMP is essential for the maintenance of normal levels of MFSD1 in lysosomes and vice versa. Glmp knockout mice mimic the phenotype of Mfsd1 knockout mice. Our data reveal a tightly linked MFSD1/GLMP lysosomal membrane protein transporter complex.
Height is a complex human phenotype that is influenced by variations in a high number of genes. Recently, a single nucleotide polymorphism (SNP) within IL11 (rs4252548) has been described to be associated with height in adults of European ancestry. This coding SNP leads to the exchange of Arg-112 to His-112 within the cytokine Interleukin-11 (IL-11), which has a well-established role in osteoclast development and bone turnover. The functional consequences of the R112H mutation are unknown so far. In this study, we show by molecular replacement that Arg-112 does not participate in binding of IL-11 to its receptors IL-11R and glycoprotein 130 (gp130). Recombinant IL-11 R112H expressed in E. coli displays a correct four-helix-bundle folding topology, and binds with similar affinity to IL-11R and the IL-11/IL-11R/gp130 complex. IL-11 R112H induces cell proliferation and phosphorylation of the downstream transcription factor STAT3 indistinguishable from IL-11. However, IL-11 R112H fails to support the survival of osteoclast progenitor cells and is less thermally stable, which is caused by the loss of the positive charge on the protein surface since protonation of the histidine side chain recovers stability.
The major function of lysosomes is the hydrolytic breakdown of various macromolecules including proteins, lipids, nucleic acids, and oligosaccharides, to low-molecular-weight metabolites which can be re-used in the cytosol for biosynthetic pathways. 1 The resulting low-molecular-weight degradation products are exported via the limiting lysosomal membrane to the cytosol by the action of numerous transporter proteins, of which many are still enigmatic. 2 Some transporter proteins actively import a subset of metabolites from the cytosol into the lysosomal lumen. 3 The great majority of lysosomal proteins including integral transmembrane proteins are highly N-glycosylated, a posttranslational modification that has evolved for protecting the lumen-exposed loops from the harsh conditions of the lysosomal matrix, which exhibits an acidic pH, a high concentration of active proteases, and reducing conditions. 4,5 Some polytopic integral membrane proteins lack N-glycosylation, but tightly interact with accessory subunits, which take over
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.