More effective rotavirus vaccines are essential for preventing extensive diarrheal morbidity and mortality in children under five years of age in low-resource regions. Nonreplicating rotavirus vaccines (NRRV) administered parenterally provide an alternate vaccination method to the current licensed oral vaccine. Live attenuated vaccines and may generate increased efficacy in low-resource settings because the parenteral administration route bypasses some of the challenges associated with oral administration, including differences in intestinal environments. Work described here supports development of a trivalent NRRV vaccine for parenteral administration to avoid complications of the gastrointestinal route. Recombinant VP8* subunit proteins representing some of the most prevalent strains of rotavirus infecting humans-DS-1 (P[4]), 1076 (P[6]), and Wa (P[8])were combined with an aluminum adjuvant and the P2 epitope of tetanus toxoid to enhance the immune response to this NRRV antigen. Vaccine formulation development included selection of aluminum hydroxide (Alhydrogel®) as an appropriate adjuvant as well as an optimal buffer to maintain antigen stability and optimize antigen binding to the adjuvant. Characterization assays were used to select the lead vaccine formulation and monitor formulation stability. The NRRV liquid formulation was stable for one year at 2°C to 8°C and four weeks at 37°C. Immunogenicity of the NRRV formulation was evaluated using a guinea pig model, where we demonstrated that the adjuvant provided a 20-fold increase in neutralization titer against a homologous antigen and that the P2-fusion also enhanced the serum neutralizing antibody responses. This vaccine candidate is currently being evaluated in human clinical trials.
BackgroundTransmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery.MethodsWhile the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay.ResultsThrough numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichiapastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production.ConclusionsIn this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.
A nonreplicating rotavirus vaccine (NRRV) containing 3 recombinant fusion proteins adsorbed to aluminum adjuvant (Alhydrogel [AH]) is currently in clinical trials. The compatibility and stability of monovalent NRRV antigen with key components of a multidose vaccine formulation were examined using physicochemical and immunochemical methods. The extent and strength of antigen-adjuvant binding were diminished by increasing phosphate concentration, and acceptable levels were identified along with alternate buffering agents. Addition of the preservative thimerosal destabilized AH-adsorbed P2-VP8-P[8] as measured by differential scanning calorimetry. Over 3 months at 4 C, AH-adsorbed P2-VP8-P[8] was stable, whereas at 25 C and 37 C, instability was observed which was greatly accelerated by thimerosal addition. Loss of antibody binding (enzyme-linked immunosorbent assay) correlated with loss of structural integrity (differential scanning calorimetry, fluorescence spectroscopy) with concomitant nonnative disulfide bond formation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and Asn deamidation (liquid chromatography-mass spectrometry peptide mapping). An alternative preservative (2phenoxyethanol) showed similar antigen destabilization. Due to limited availability, only key assays were performed with monovalent P2-VP8-P[4] and P2-VP8-P[6] AH-adsorbed antigens, and varying levels of preservative incompatibility were observed. In summary, monovalent AH-adsorbed NRRV antigens stored at 4 C showed good stability without preservatives; however, future formulation development efforts are required to prepare a stable, preservative-containing, multidose NRRV formulation.
Carbon dioxide Assisted Nebulization with a Bubble Dryer((R)) (CAN-BD) processing allows particles to be made in the 3-5 mum size range, which is desirable for lung delivery, without destroying biological activity. In response to the Grand Challenge in Global Health Initiative #3, we have been developing an inhalable needle-free live-attenuated measles virus vaccine for use in developing countries. Measles was chosen because it is the number one vaccine preventable killer of children worldwide. Powders were processed by CAN-BD, where a solution containing excipients and live-attenuated measles virus in water was mixed intimately with supercritical or near superctitical carbon dioxide to form an emulsion. The emulsion was expanded to atmospheric pressure through a flow restrictor. The resulting plume was dried by heated nitrogen and the powders collected on a filter at the bottom of the drying chamber. Powders were analyzed using varying techniques including X-ray diffraction, scanning electron microscopy, Andersen cascade impaction, differential scanning calorimetery, Karl Fischer titration, and viral plaque assay. CAN-BD has been used to produce powders of live-attenuated measles virus vaccine with characteristics desirable for lung delivery. The powders retain viral activity through forming and drying the microparticles by CAN-BD, and have passed the WHO stability test for 1 week at 37 degrees C. The powders have an amorphous character and a glass transition temperature of around 60 degrees C. Lyophilization, the present standard commercial method of processing measles vaccine makes solids with a water content of less than 1%. By substituting myo-inositol for sorbitol and using the CAN-BD drying technique the water content can be lowered to 0.5%. The most successful formulations to date have been based conceptually on the current lyophilized formulation, but with modifications to the type and amounts of sugar. Of current interest are formulations containing myo-inositol, as they retain high viral activity and have low initial water content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.