We apply on-shell and integrability methods that have been developed in the context of scattering amplitudes in N = 4 SYM theory to tree-level form factors of this theory. Focussing on the colour-ordered super form factors of the chiral part of the stresstensor multiplet as an example, we show how to systematically construct on-shell diagrams for these form factors with the minimal form factor as further building block in addition to the three-point amplitudes. Moreover, we obtain analytic representations in terms of Graßmannian integrals in spinor helicity, twistor and momentum twistor variables. While Yangian invariance is broken by the operator insertion, we find that the form factors are eigenstates of the integrable spin-chain transfer matrix built from the monodromy matrix that yields the Yangian generators. Constructing them via the method of R operators allows to introduce deformations that preserve the integrable structure. We finally show that the integrable properties extend to minimal tree-level form factors of generic composite operators as well as certain leading singularities of their n-point loop-level form factors.
Supersymmetry operators that change a spin chain's length have appeared in numerous contexts, ranging from the AdS/CFT correspondence to statistical mechanics models. In this article, we present, via an analysis of the Bethe equations, all homogeneous, rational and trigonometric, integrable gl(n|m) spin chains for which length-changing supersymmetry can be present. Furthermore, we write down the supercharges explicitly for the simplest new models, namely the sl(n|1) spin chains with the (n − 1)-fold antisymmetric tensor product of the fundamental representation at each site and check their compatibility with integrability.
We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in N = 4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.
We present an approach to evaluate the full operatorial Q-system of all u(p, q|r + s)-invariant spin chains with representations of Jordan-Schwinger type. In particular, this includes the super spin chain of planar N = 4 super Yang-Mills theory at one loop in the presence of a diagonal twist. Our method is based on the oscillator construction of Q-operators. The Q-operators are built as traces over Lax operators which are degenerate solutions of the Yang-Baxter equation. For non-compact representations these Lax operators may contain multiple infinite sums that conceal the form of the resulting functions. We determine these infinite sums and calculate the matrix elements of the lowest level Q-operators. Transforming the Lax operators corresponding to the Q-operators into a representation involving only finite sums allows us to take the supertrace and to obtain the explicit form of the Q-operators in terms of finite matrices for a given magnon sector. Imposing the functional relations, we then bootstrap the other Q-operators from those of the lowest level. We exemplify this approach for non-compact spin −s spin chains and apply it to N = 4 at the one-loop level using the BMN vacuum as an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.