ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 and 2014 Nucleic Acids Research Database Issues. Since then, alongside the continued extraction of data from the medicinal chemistry literature, new sources of bioactivity data have also been added to the database. These include: deposited data sets from neglected disease screening; crop protection data; drug metabolism and disposition data and bioactivity data from patents. A number of improvements and new features have also been incorporated. These include the annotation of assays and targets using ontologies, the inclusion of targets and indications for clinical candidates, addition of metabolic pathways for drugs and calculation of structural alerts. The ChEMBL data can be accessed via a web-interface, RDF distribution, data downloads and RESTful web-services.
ChEMBL is a large, open-access bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012, 2014 and 2017 Nucleic Acids Research Database Issues. In the last two years, several important improvements have been made to the database and are described here. These include more robust capture and representation of assay details; a new data deposition system, allowing updating of data sets and deposition of supplementary data; and a completely redesigned web interface, with enhanced search and filtering capabilities.
Malaria is a disease affecting hundreds of millions of people across the world, mainly in developing countries and especially in sub-Saharan Africa. It is the cause of hundreds of thousands of deaths each year and there is an ever-present need to identify and develop effective new therapies to tackle the disease and overcome increasing drug resistance. Here, we extend a previous study in which a number of partners collaborated to develop a consensus in silico model that can be used to identify novel molecules that may have antimalarial properties. The performance of machine learning methods generally improves with the number of data points available for training. One practical challenge in building large training sets is that the data are often proprietary and cannot be straightforwardly integrated. Here, this was addressed by sharing QSAR models, each built on a private data set. We describe the development of an open-source software platform for creating such models, a comprehensive evaluation of methods to create a single consensus model and a web platform called MAIP available at https://www.ebi.ac.uk/chembl/maip/. MAIP is freely available for the wider community to make large-scale predictions of potential malaria inhibiting compounds. This project also highlights some of the practical challenges in reproducing published computational methods and the opportunities that open-source software can offer to the community.
This research examines the impact of several aesthetic/appearance characteristics of web-based distance learning environments on information recall and perceived content difficulty. Six webbased instructional modules were used, which consisted of fragments of different lectures, each containing a different topic and ranging between three to six minutes in length. The results show that appearance/aesthetic judgments do matter and they offer additional insights into the effectiveness of instructional methods beyond traditional performance measures. In this study the appearance/aesthetic judgments changed as participants were exposed to a series of modules over time in a way that is different from the corresponding performance changes. The integration of aesthetic/appearance judgments in the evaluation of web-based distance learning technology gives us valuable insights to deepen our understanding of what characteristics of the technology make it more appealing and successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.