SummaryHelicobacter pylori is the causative agent of peptic ulcer disease. A major virulence factor of H. pylori is VacA, a toxin that causes massive vacuolization of epithelial cell lines in vitro and gastric epithelial erosion in vivo . Although VacA is exported over the outer membrane and is released from the bacteria, a portion of the toxin remains associated with the bacterial surface. We have found surface-associated toxin to be biologically active and spatially organized into distinct toxin-rich domains on the bacterial surface. Upon bacterial contact with host cells, toxin clusters are transferred directly from the bacterial surface to the host cell surface at the bacteria-cell interface, followed by uptake and intoxication. This contactdependent transfer of VacA represents a cost-efficient route for delivery of VacA and potentially other bacterial effector molecules to target cells.
Following ligand binding the TCR segregates to plasma membrane microdomains, termed lipid rafts, characterized by a highly ordered lipid structure favoring partitioning of glycosyl phosphatidyl inositol‐linked costimulatory receptors and acylated signaling molecules. Here we show that the inducible association of the TCR and key signaling proteins with lipid rafts is dependent on the actin cytoskeleton through a mechanism involving raft coalescence. Although lipid rafts are required for full activation of the TCR‐dependent tyrosine phosphorylation cascade and sustained signaling, triggering of TCR‐proximal events, including Fyn activation and a first wave of Vav phosphorylation, is independent of lipid rafts, while a second wave of raft‐dependent Vav phosphorylation occurs after raft coalescence, as also supported by the finding that Vav is phosphorylated in response to lipid raft clustering by GM1 aggregation. The constitutive association found between Vav and the CD3ζ chain suggests a model whereby the TCR‐associated signaling machinery initiates raft aggregation by promoting F‐actin reorganization, which permits full activation of the tyrosine phosphorylation cascade, further reorganization of the actin cytoskeleton and sustained signaling, leading to cell activation.
The controversial mating of the strepsipteran Xenos vesparum was studied to investigate the possible sperm routes for fertilization. The female, which is a neotenic permanent endoparasite of Polistes wasps, extrudes only its anterior region, the "cephalothorax," from the host abdomen. This region has an opening where both mating and larval escape occur. Observations with scanning and transmission electron microscopy revealed spermatozoa not only in the hemocoel, but also in the "ventral canal" (an extragenital duct peculiar to strepsipteran females) and in the "genital ducts" (ectodermal invaginations connecting the ventral canal to the hemocoel) of recently mated females. Xenos vesparum spermatozoa can reach the oocytes either through the hemocoel as a result of a hypodermic insemination, or by moving along the extragenital ducts, which are later used by first instar larvae to escape. The hypothesis of hypodermic insemination is reconsidered in the light of behavioral and ultrastructural evidence.
Various aspects of the reproductive anatomy of the spider crab Inachus phalangium are investigated utilizing light and electron microscopy. Spermatozoal ultrastructure reveals the presence of a glycocalyx in the peripheral region of the periopercular rim, never recorded before in crustacean sperm cells. Sperm cell morphological traits such as semi-lunar acrosome shape, centrally perforate and flat operculum, and absence of a thickened ring, are shared only with Macropodia longirostris, confirming a close phylogenetic relationship of these species and their separation from the other members of the family Majidae. Spermatozoa are transferred to females inside spermatophores of different sizes, but during ejaculate transfer, larger spermatophores might be ruptured by tooth-like structures present on the ejaculatory canal of the male first gonopod, releasing free sperm cells. Such a mechanism could represent the first evidence of a second form of sperm competition in conflict with sperm displacement, the only mechanism of sperm competition known among Brachyura, enabling paternity for both dominant and smaller, non-dominant, males. In addition, we propose several hypotheses concerning the remote and proximal causes of the existence of large seminal receptacles in females of I. phalangium. Among these, genetically diverse progeny, reduction of sexual harassment and phylogenetic retention seem the most plausible, while acquisition of nutrients from seminal fluids, demonstrated in other arthropods, and suggested by previous studies, could be discarded on the basis of the presented data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.