A natural architecture for nanoscale quantum computation is that of a quantum
cellular automaton. Motivated by this observation, in this paper we begin an
investigation of exactly unitary cellular automata. After proving that there
can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in
one dimension, we weaken the homogeneity condition and show that there are
nontrivial, exactly unitary, partitioning cellular automata. We find a one
parameter family of evolution rules which are best interpreted as those for a
one particle quantum automaton. This model is naturally reformulated as a two
component cellular automaton which we demonstrate to limit to the Dirac
equation. We describe two generalizations of this automaton, the second of
which, to multiple interacting particles, is the correct definition of a
quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages); minor typographical
corrections and journal reference adde
During the last decade text mining has become a widely used discipline utilizing statistical and machine learning methods. We present the tm package which provides a framework for text mining applications within R. We give a survey on text mining facilities in R and explain how typical application tasks can be carried out using our framework. We present techniques for count-based analysis methods, text clustering, text classification and string kernels.
We consider game theory from the perspective of quantum algorithms. Strategies in classical game theory are either pure (deterministic) or mixed (probabilistic). We introduce these basic ideas in the context of a simple example, closely related to the traditional MATCHING PENNIES game. While not every two-person zero-sum finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from the equilibrium strategy cannot increase a player's expected payoff. We show, however, that in our example a player who implements a quantum strategy can increase his expected payoff, and explain the relation to efficient quantum algorithms. We prove that in general a quantum strategy is always at least as good as a classical one, and furthermore that when both players use quantum strategies there need not be any equilibrium, but if both are allowed mixed quantum strategies there must be.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.