Background: Ceramide synthases N-acylate (dihydro-)sphingosine to (dihydro-)ceramide in mammals. Results: Enzymatically inactive ceramide synthase 6 in mice (CerS6KO) results in an altered sphingolipid metabolism and behavioral abnormalities. Conclusion: Catalytically active CerS6 is necessary to maintain sphingolipid homeostasis in mice. Significance: The CerS6KO mouse reveals for the first time the metabolic and physiological consequences of CerS6 inactivation.
Chronic wasting disease (CWD) is a fatal, contagious, neurodegenerative prion disease affecting both free-ranging and captive cervid species. CWD is spread via direct or indirect contact or oral ingestion of prions. In the gastrointestinal tract, prions enter the body through microfold cells (M-cells), and the abundance of these cells can be influenced by the gut microbiota. To explore potential links between the gut microbiota and CWD, we collected fecal samples from farmed and free-ranging white-tailed deer (Odocoileus virginianus) around the Midwest, USA. Farmed deer originated from farms that were depopulated due to CWD. Free-ranging deer were sampled during annual deer harvests. All farmed deer were tested for CWD via ELISA and IHC, and we used 16S rRNA gene sequencing to characterize the gut microbiota. We report significant differences in gut microbiota by provenance (Farm 1, Farm 2, Free-ranging), sex, and CWD status. CWD-positive deer from Farm 1 and 2 had increased abundances of Akkermansia, Lachnospireacea UCG-010, and RF39 taxa. Overall, differences by provenance and sex appear to be driven by diet, while differences by CWD status may be linked to CWD pathogenesis.
Chronic wasting disease (CWD) is a fatal, contagious, neurodegenerative prion disease affecting both free-ranging and captive cervid species. CWD is spread via direct or indirect contact or oral ingestion of prions. In the gastrointestinal tract, prions enter the body through microfold cells (M-cells), and the abundance of these cells can be influenced by the gut microbiota. To explore potential links between the gut microbiota and CWD, we collected fecal samples from farmed and free-ranging white-tailed deer (Odocoileus virginianus) around the Midwest. Farmed deer orignated from farms that were depopulated due to CWD. Free-ranging deer were sampled during annual deer harvests. All farmed deer were tested for CWD via ELISA and IHC, and we used 16S rRNA gene sequencing to characterize the gut microbiota. We report significant differences in gut microbiota by provenance (Farm 1, Farm 2, Free-ranging), sex, and CWD status. CWD-positive deer from Farm 1 and 2 had increased abundances of Akkermansia, Lachnospireacea UCG-010, and RF39 taxa. Overall, differences by provenance and sex appear to be driven by diet, while differences by CWD status may be linked to CWD pathogenesis.
Background Enteritis is a common cause of morbidity and mortality in lorikeets that can be challenging to diagnose and treat. In this study, we examine gut microbiota in two lorikeet flocks with enteritis (Columbus Zoo and Aquarium—CZA; Denver Zoo—DZ). Since 2012, the CZA flock has experienced repeated outbreaks of enteritis despite extensive diet, husbandry, and clinical modifications. In 2018, both CZA and DZ observed a spike in enteritis. Recent research has revealed that the gut microbiota can influence susceptibility to enteropathogens. We hypothesized that a dysbiosis, or alteration in the gut microbial community, was making some lorikeets more susceptible to enteritis, and our goal was to characterize this dysbiosis and determine the features that predicted susceptibility. Results We employed 16S rRNA sequencing to characterize the cloacal microbiota in lorikeets (CZA n = 67, DZ n = 24) over time. We compared the microbiota of healthy lorikeets, to lorikeets with enteritis, and lorikeets susceptible to enteritis, with “susceptible” being defined as healthy birds that subsequently developed enteritis. Based on sequencing data, culture, and toxin gene detection in intestinal contents, we identified Clostridium perfringens type A (CZA and DZ) and C. colinum (CZA only) at increased relative abundances in birds with enteritis. Histopathology and immunohistochemistry further identified the presence of gram-positive bacilli and C. perfringens, respectively, in the necrotizing intestinal lesions. Finally, using Random Forests and LASSO models, we identified several features (young age and the presence of Rhodococcus fascians and Pseudomonas umsongensis) associated with susceptibility to clostridial enteritis. Conclusions We identified C. perfringens type A and C. colinum associated with lorikeet necrohemorrhagic enteritis at CZA and DZ. Susceptibility testing of isolates lead to an updated clinical treatment plan which ultimately resolved the outbreaks at both institutions. This work provides a foundation for understanding gut microbiota features that are permissive to clostridial colonization and host factors (e.g. age, prior infection) that shape responses to infection.
Non-human New World primates are recognized as particularly susceptible to metabolic bone disease. Improper UV light exposure and/or insufficient dietary levels of vitamin D can lead to poor bone development and skeletal mineralization deficits. This report documents the clinical progression of rickets, a type of metabolic bone disease, in a whitefaced saki (Pithecia pithecia), presenting the first documented case, to our knowledge, of this condition in this primate species. Because inconsistent feeding habits and seasonality are believed to have contributed to the development of rickets in this individual, adequate UV light exposure and adequate levels of dietary vitamin D are important considerations for individuals housed indoors and during periods of growth, ensuring adequate calcium regulation and prevention of sequela associated with low calcium and vitamin D levels. Through a multi-faceted approach targeting medical, dietary, and husbandry changes, primate species exhibiting signs of metabolic bone diseases can be successfully managed to allow for a good quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.