a b s t r a c tThe global community has recognized the importance of forests for biodiversity, and has prioritized the preservation of forest biodiversity and ecosystem functions through multiple multilateral agreements and processes such as the Convention on Biodiversity's Aichi Targets and the Millennium Development Goals. The Global Forest Resources Assessment (FRA) provides one mechanism for tracking progress toward such goals in three particular areas: primary forest area, protected forest areas, and areas designated for the conservation of biodiversity. In this paper, we quantify current area and trends in forest areas designated for the conservation of biodiversity, protected forest areas, and primary forests by country and biome; and examine the association between total forest area and measures of protection, per-capita income, and population. The overall findings suggest that countries are increasingly protecting forests of ecological significance at the global scale (7.7% of forests were protected in 1990 rising to 16.3% in 2015), with a strong upward trend in protected areas in the tropical domain (from 12% in 1990 to 26.3% in 2015). However, primary forest area has declined by 2.5% globally and by 10% in the tropics over the period 1990-2015 (using data for countries that reported in all years). Given that many species in the tropics are endemic to primary forests, losses in that climatic domain continue to be of concern, although the rate of decline appears to be slowing.Using multiple regression analysis, we find that a 1% increase in protected area or area designated for biodiversity conservation within a country is associated with an increase in total forest area in that country of about 0.03% (p < 0.05). A 1% within-country increase in population density and per capita GDP are associated with a decrease in forest area of about 0.2% (p < 0.01) and an increase in forest area of about 0.08% (p < 0.05) respectively. Our findings also indicate that, since FRA is used as one mechanism for tracking progress toward goals like the AICHI Biodiversity Targets, country correspondents may require additional assistance toward reporting on primary forest, protected forest, and biodiversity conservation statistics.Ó 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
Management of renewable natural resources and the corresponding policy formulation should be founded on reliable data and information. This refers both to information on the resource itself and to information on the market situation. In this paper, we present methodology and major results of an inventory of the Guadua resources, in a study area of about 1 million ha within the Coffee Region of Colombia. This inventory produced for the first time sample-based statistical estimations of the Guadua area and growing stock. In the study area, land cover of Guadua patches was estimated to be 3.9% or about 40,000 ha (minimum patch area 0.3 ha). This is higher than figures published earlier. Estimation for mean number of standing culms (including shoots and dry culms) per hectare was 6,940 with a mean diameter at breast height of 10.8 cm, apparent commercial volume of 654 m 3 /ha, commercial wood volume of 304 m 3 /ha, oven-dry biomass of 311 ton/ha, and total carbon stock of 156 ton/ha. While the lowintensity sampling approach worked well and may serve as an example for similar studies, we identified a number of issues for further research, particularly in what refers to as the basic mensurational models for Guadua volume and biomass estimation from inventories.
Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.