The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Abstract-In this work, we focus on model predictive control of nonlinear systems subject to data losses. The motivation for considering this problem is provided by wireless networked control systems and control of nonlinear systems under asynchronous measurement sampling. In order to regulate the state of the system towards an equilibrium point while minimizing a given performance index, we propose a Lyapunov-based model predictive controller which is designed taking data losses explicitly into account, both in the optimization problem formulation and in the controller implementation. The proposed controller allows for an explicit characterization of the stability region and guarantees that this region is an invariant set for the closed-loop system under data losses, if the maximum time in which the loop is open is shorter than a given constant that depends on the parameters of the system and the Lyapunov-based controller that is used to formulate the optimization problem. The theoretical results are demonstrated through a chemical process example.Index Terms-Fault-tolerant control systems, networked control systems (NCS), predictive control for nonlinear systems, process control applications.
This work focuses on a class of nonlinear control problems that arise when new control systems which may use networked sensors and/or actuators are added to already operating control loops to improve closed-loop performance. In this case, it is desirable to design the pre-existing control system and the new control system in a way such that they coordinate their actions. To address this control problem, a distributed model predictive control method is introduced where both the pre-existing control system and the new control system are designed via Lyapunov-based model predictive control. Working with general nonlinear models of chemical processes and assuming that there exists a Lyapunov-based controller that stabilizes the nominal closed-loop system using only the pre-existing control loops, two separate Lyapunov-based model predictive controllers are designed that coordinate their actions in an efficient fashion. Specifically, the proposed distributed model predictive control design preserves the stability properties of the Lyapunov-based controller, improves the closed-loop performance, and allows handling input constraints. In addition, the proposed distributed control design requires reduced communication between the two distributed controllers since it requires that these controllers communicate only once at each sampling time and is computationally more efficient compared to the corresponding centralized model predictive control design. The theoretical results are illustrated using a chemical process example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.