A recently suggested mechanism for the stress memory of various metal phosphates is investigated experimentally. Based on first-principles simulations [N. J. Mosey et al., Science 307, 1612 (2005)], it had been argued that atoms with flexible coordination, such as zinc or heavy-metal cations, act as network-forming agents, undergoing irreversible pressure-induced changes in bonding that lead to increased connectivity between phosphate anions. In the present study, orthophosphates of zinc and calcium were exposed to high pressures on surfaces and in diamond anvil cells. An additional set of first-principles simulations was accomplished on alpha-orthophosphate of zinc, which suggested that this material was already cross-linked before compression but that it nevertheless underwent a reversible coordination change under pressure in agreement with the experimental results presented here. Raman spectra indicate an irreversible, pressure-induced loss of long-range crystallinity. The pressures required to induce these changes are around 7 GPa for the zinc phosphates, while they are close to 21 GPa for the calcium phosphates. Hydrogenation of the metal phosphate lowers the threshold pressure by approximately 2-3 GPa in both cases. Moreover, alpha-orthophosphate of zinc could be partially amorphisized under nonisotropic pressure on copper foils.
The interaction of a friction modifier and a calcium phenate detergent additive, with zinc dialkyl dithiophosphates (ZDDPs) in the formation of antiwear films on A383, has been studied using synchrotron radiation and nanoindentation techniques. X-ray absorption near edge structure (XANES) spectroscopy has shown that films prepared from oils containing both ZDDP and detergent, and ZDDP and molybdenum dithiocarbamate (MoDTC), are chemically similar to, but thicker than those made from oils containing only ZDDP. In addition, wear was greatly reduced in the presence of the detergent which was correlated with the basicity and the presence of the friction modifier. The phosphorus K and L edge XANES spectra show that the tribofilms are polyphosphate glasses of similar nature to those found on steel, but characterised by a shorter chain length. The sulphur K edge shows a MoS 2 like film and under certain conditions, the presence of a sulphate species is detected. High resolution topographic images and mechanical properties were determined by atomic force microscopy and imaging nanoindentation. The films formed in the presence of the detergent exhibited similar mechanical responses independent of the conditions tested. The indentation modulus of the films on the Al matrix always appear much softer than the films formed on the Si grains whether or not the lubricant contains only ZDDP, or both ZDDP and MoDTC.
Phosphorus L-edge and oxygen K-edge X-ray PhotoEmission Electron Microscopy (XPEEM) have been used to characterize the chemical nature of the cation present in tribochemical films via comparison with model Fe 2+ and Zn 2+ compounds. The results are contrasted to the P L-edge, P K-edge and S K-edge XANES data. The findings suggest that antiwear pads containing long chain zinc polyphosphate glass are formed at the points of asperity contact, and a thin, short chain zinc polyphosphate film is formed where no asperity contact is made. SEM/EDX measurements helped to elucidate the distribution of the elements, and strong spatial correlations were observed between P, O, Zn and S in the pads, indicating that they are composed mostly of zinc polyphosphates, especially near the surface. The zinc polyphosphate antiwear pads are characterized by a much lower modulus than that observed on the thin film regions, the latter being characteristic of the substrate steel.
The nanoindentation-induced phase transformation behavior of silicon at elevated temperatures (25-150 degrees C) has been studied. Nucleation of Si-III/Si-XII on unloading is enhanced with increasing temperature and at the highest temperatures in an amorphous Si matrix, occurs in a continuous fashion without a pop-out event. Interestingly, for slow unloading at the highest temperatures, formation of Si-III/Si-XII in a crystalline Si matrix was not observed. Elevated temperatures enhance the nucleation of Si-III and Si-XII during unloading but the final composition of the phase transformed zone is also dependent on the thermal stability of the phases in their respective matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.