As experimental fluid dynamics becomes increasingly expensive and time consuming, researchers become more reliant on computational fluid dynamics (cfd) solutions. However for many applications, the use of cfd alone is not enough to provide confidence. Using the example of compressible flow ground effect aerodynamics, the use of an integrated computational/experimental fluid dynamics research program is described. Relatively cheap and simple experiments are designed using cfd to provide suitable and thorough validation data for more complex cfd flows. Extra advantages of the implementation of both techniques by the same team of researchers are that errors are minimised, and issues of miscommunication between two disparate groups of numerical and experimental researchers disappear.
Experimental aerodynamic testing of objects in close ground proximity at high subsonic Mach numbers is difficult due to the construction of a transonic moving ground being largely unfeasible. Two simple, passive methods have been evaluated for their suitability for such testing in a small blowdown wind tunnel: an elevated ground plane, and a symmetry (or mirror-image) approach. The methods were examined using an unswept wing of RAE2822 section, with experiments and Reynolds-Averaged Navier Stokes CFD used synergistically to determine the relative merits of the techniques. The symmetry method was found to be a superior approximation of a moving ground in all cases, with mild discrepancies observed only at the lowest ground clearance. The elevated ground plane was generally found to influence the oncoming flow and distort the flowfield between the wing and ground, such that the method provided a less-satisfactory match to moving ground simulations compared to the symmetry technique.
The potential positive effects of ground proximity on the aerodynamic performance of a wing or aerofoil have long been established, but at transonic speeds the formation of shock waves between the body and the ground plane would have significant consequences. A numerical study of the aerodynamics of an RAE2822 aerofoil section in ground effect flight was conducted at freestream Mach numbers from 0·5 to 0·9, at a range of ground clearances and angles of incidence. It was found that in general the aerofoil's lifting capability was still improved with decreasing ground clearance up until the point at which a lower surface shock wave formed (most commonly at the lowest clearances). The critical Mach number for the section was reached considerably earlier in ground effect than it would be in freestream, and the buffet boundary was therefore also reached at an earlier stage. The flowfields observed were relatively sensitive to changes in any given variable, and the lower surface shock had a destabilising effect on the pitching characteristics of the wing, indicating that sudden changes in both altitude and attitude would be experienced during sustained transonic flight close to the ground plane. Since ground proximity hastens the lower surface shock formation, no gain in aerodynamic efficiency can be gained by flying in ground effect once that shock is present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.