The information communication technology sector will experience huge growth over the coming years, with 29.3 billion devices expected online by 2030, up from 18.4 billion in 2018. To reliably support the online services used by these billions of users, data centres have been built around the world to provide the millions of servers they contain with access to power, cooling and internet connectivity. Whilst the energy consumption of these facilities regularly receives mainstream and academic coverage, analysis of their water consumption is scarce. Data centres consume water directly for cooling, in some cases 57% sourced from potable water, and indirectly through the water requirements of non-renewable electricity generation. Although in the USA, data centre water consumption (1.7 billion litres/day) is small compared to total water consumption (1218 billion litres/day), there are issues of transparency with less than a third of data centre operators measuring water consumption. This paper examines the water consumption of data centres, the measurement of that consumption, highlights the lack of data available to assess water efficiency, and discusses and where the industry is going in attempts to reduce future consumption.
Efficiency improvements over the past decade have meant that data center energy usage has decoupled from the growth in IT workloads. Much of this efficiency improvement has been attributed to innovations made by "hyperscale" public cloud vendors, where a large proportion of new IT workloads are now being deployed. However, the move to the cloud is making it more difficult to assess the environmental impact of workloads deployed there. Although the large cloud vendors are amongst the largest purchasers of renewable electricity, customers do not have access to the data they need to complete emissions assessments under the Greenhouse Gas Protocol. Data such as Power Usage Effectiveness, emissions factors and equipment embodied energy are not available from public cloud vendors. This paper demonstrates how the Greenhouse Gas Protocol method of assessment of IT emissions does not work for public cloud environments and suggests how this can be tackled by the cloud vendors themselves.
Aquaponics is a food production system which connects recirculating aquaculture (fish) to hydroponics (plants) systems. Although aquaponics has the potential to improve soil conditions by reducing erosion and nutrient loss and has been shown to reduce food production related carbon emissions by up to 73%, few commercial aquaponics projects in the EU and UK have been successful. Key barriers to commercial success are insufficient initial investment, an uncertain and complex regulatory environment, and the lack of projects operating on a large scale able to demonstrate profitability. In this paper, we use the UK as a case study to discuss the legal and economic barriers to the success of commercial aquaponics in the EU. We also propose three policies: (1) making aquaponics eligible for the new system of Environmental Land Management grants; (2) making aquaponics eligible for organic certification; and (3) clarifying and streamlining the aquaponics licence application process. The UK’s departure from the EU presents a unique opportunity to review agricultural regulations and subsidies, which in turn could provide evidence that similar reforms are needed in the EU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.