Woven Hi-Nicalon TM -reinforced melt-infiltrated SiC-matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared with the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high-stress regime where rupture occurs at a fast rate and a low-stress regime where rupture occurs at a slower rate. For the high-stress regime, the matrix damage state consisted of through-thickness cracks. The average fracture strength of fibers that were pulled out (the final fibers to break before ultimate failure) was controlled by the slow-crack-growth rupture criterion in the literature for individual Hi-Nicalon fibers. For the low-stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.
Carbon fiber‐reinforced silicon carbide (C/SiC) composites have the potential to be utilized in many high‐temperature structural applications, particularly in aerospace. However, the susceptibility of the carbon fibers to oxidation has hindered the composite's use in long‐term reusable applications. In order to identify the composites limitations, fundamental oxidation studies were conducted to determine the effects of such variables as temperature, environment, and stress. The systematic studies first looked at the oxidation of the plain, uncoated carbon fiber, then when fiber was utilized within a C/SiC composite, and finally when a stress was applied to the C/SiC composite (stressed oxidation). The first study, oxidation of just the carbon fibers, showed that the fiber oxidation kinetics occurs in two primary regimes: chemical reaction control and diffusion control. The second study, oxidation of the C/SiC composite, showed the self‐protecting effects from the SiC matrix at elevated temperatures when the composite was not stressed. The final study, stressed oxidation of the C/SiC composite, more closely simulated application conditions in which the material is expected to encounter thermal and mechanical stresses. The applied load and temperature will affect the openings of the as‐fabricated cracks, which are an unavoidable characteristic of C/SiC composites. The main objective of the paper was to determine the oxidation kinetic regimes for the oxidation of carbon fibers in a cracked silicon carbide matrix under stressed and unstressed conditions. The studies help to provide insights in to the protective approaches, that could be used to prevent oxidation of the fibers within the composite.
Ten different ceramic matrix composite (CMC) materials were subjected to a constant load and temperature in an air environment. Tests conducted under these conditions are often referred to as stressed oxidation or creep rupture tests. The stressed oxidation tests were conducted at a temperature of 1454°C at stresses of 69 MPa, 172 MPa and 50% of each material's ultimate tensile strength. The ten materials included such CMCs as C/SiC, SiC/C, SiC/SiC, SiC/SiNC and C/C. The time to failure results of the stressed oxidation tests will be presented. Much of the discussion regarding material degradation under stressed oxidation conditions will focus on C/SiC composites. Thermogravimetric analysis of the oxidation of fully exposed carbon fiber (T300) and of C/SiC coupons will be presented as well as a model that predicts the oxidation patterns and kinetics of carbon fiber tows oxidizing in a nonreactive matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.