In the near future mobile devices with several interfaces will become commonplace. Most of the peripheral networks using the Internet will therefore employ wireless technology. To provide support for these devices, this paper proposes a new framework which encompasses the functions of both peripheral and core networks.The framework is called Y-Comm and is defined in a layered manner like the OSI model.
A key component of intelligent transportation is the provision of adequate network infrastructure to support vehicleto-vehicle and vehicle-to-roadside communication. In this paper we report on performance evaluations carried out using the IEEE 802.11a protocol at 5.2 GHz between a moving vehicle and a fixed base station. We concentrate our evaluation on realistic urban speeds and environments, observing that performance at very low speeds is degraded due to the presence of null zones. We vary the modulation scheme and analyse the spread of resulting throughputs. Our results have implications for multimedia and other real-time applications that will utilise vehicle-to-roadside connectivity.
Abstract-With the rapid growth of WLAN capability for mobile devices such as laptops, handhelds, mobile phones and vehicles, we will witness WLANs with very large numbers of active nodes for which very efficient medium access control techniques will be needed to cope with high loads and mobility. We propose a high performance solution based on an innovative node elimination algorithm that uses short and unmodulated bursts of energy during contention -no data is exchanged. We also present a modified OFDM PHY layer, based on IEEE 802.11a, which allows sensing and bursting on individual subcarriers. We show that the protocol maintains a very low overhead and collision probability which lead to high and virtually constant network throughput at all analyzed network loads, even beyond 500 nodes. The protocol is validated by extensive simulation, comparing it against the IEEE 802.11a and SYN-MAC protocols.
This paper surveys the technologies available for constructing a pervasive, national-scale road pricing system. It defines the different types of road pricing, the methods by which a vehicle's position can be determined, and then examines possible pricing regimes in the context of their technological requirements and implications. The issue of enforcement and the distribution of pricing policies are considered, and further complexities are outlined. An examination of the security aspects of such systems is made, focusing particularly on the need to ensure privacy using technological, rather than solely procedural, methods. The survey concludes that a pervasive, national-scale deployment is unlikely to be technically achievable in the short term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.