A Reynolds-averaged Navier–Stokes (RANS) solver developed in-house was used to simulate grazing channel flow past single and multiple cavities. The objective of this investigation was to predict fluid instabilities in hole-pattern stator seals. The numerical results generated with the RANS solver showed good agreement with those obtained using a commercial large eddy simulation code. In addition, the numerical results agreed well with experimental data. Rossiter’s formula, a popular semi-empirical model used to predict frequencies of hole-tone acoustic instabilities caused by grazing fluid flow past open cavities, was modified using the RANS solver results to allow for its application to channel flows. This was done by modifying the empirical constant κ, the ratio of vortex velocity, and the freestream velocity. The dominant frequencies predicted using Rossiter’s formula with the new κ value matched well with the experimental data for hole-pattern stator seals. The RANS solver accurately captured the salient features of the flow/acoustic interaction and predicted well the dominant acoustic frequencies measured in an experimental investigation. The flow solver also provided detailed physical insight into the cavity flow instability mechanism.
A Reynolds-averaged Navier-Stokes (RANS) solver developed in-house was used to simulate grazing channel flow past single and multiple cavities. The objective of this investigation was to predict fluid instabilities in hole-pattern stator seals. The numerical results generated with the RANS solver showed good agreement with those obtained using a commercial Large Eddy Simulation (LES) code. In addition, the numerical results agreed well with experimental data. Rossiter’s formula, a popular semi-empirical model used to predict frequencies of hole-tone acoustic instabilities caused by grazing fluid flow past open cavities, was modified using the RANS solver results to allow for its application to channel flows. This was done by modifying the empirical constant κ, the ratio of vortex velocity and the freestream velocity. The dominant frequencies predicted using the Rossiter’s formula with the new κ value matched well the experimental data for hole-pattern stator seals. The RANS solver accurately captured the salient features of the flow/acoustic interaction and predicted well the dominant acoustic frequencies measured in an experimental investigation. The flow solver also provided detailed physical insight into the cavity flow instability mechanism.
This article discusses the mechanism for prediction of aeroacoustic resonance in cavities of hole-pattern stator seals. A Reynolds-averaged Navier–Stokes (RANS) solver developed in-house was used to simulate grazing channel flow past a cavity located in a channel. The numerical results generated with the RANS solver showed good agreement with those obtained using a commercial large eddy simulation code. In addition, the numerical results agreed well with the experimental data. Rossiter’s formula, a popular semi-empirical model used to predict frequencies of holetone acoustic instabilities caused by grazing fluid flow past open cavities, was modified using the RANS solver results to allow for its application to channel flows. This was done by modifying the empirical constant, the ratio of vortex velocity, and the freestream velocity. The RANS solver accurately captured the salient features of the flow/acoustic interaction and predicted well the dominant acoustic frequencies measured in an experimental investigation. The flow solver also provided detailed physical insight into the cavity flow instability mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.