Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages and limitations of each strategy are summarized and compared. Progress in theoretical modeling of surface design and wettability behavior focuses on the transition state of superhydrophobic surfaces and the role of the roughness factor. Finally, the problems/obstacles related to applicability of superhydrophobic surfaces in real life are addressed. This review should be of interest to students and scientists interested specifically in superhydrophobic surfaces but also to scientists and industries focused in material chemistry in general.
The radiative and nonradiative decay rates of lissamine dye molecules, chemically attached to differently sized gold nanoparticles, are investigated by means of time-resolved fluorescence experiments. A pronounced fluorescence quenching is observed already for the smallest nanoparticles of 1 nm radius. The quenching is caused not only by an increased nonradiative rate but, equally important, by a drastic decrease in the dye's radiative rate. Assuming resonant energy transfer to be responsible for the nonradiative decay channel, we compare our experimental findings with theoretical results derived from the Gersten-Nitzan model. DOI: 10.1103/PhysRevLett.89.203002 PACS numbers: 33.50.-j, 81.07.Pr Resonant energy transfer (RET) systems consisting of organic dye molecules and noble metal nanoparticles have recently gained considerable interest in biophotonics [1][2][3][4] as well as in materials science [5,6]. Closely related are donor-acceptor pairs of organic dye molecules forming Förster resonant energy transfer (FRET) systems. They have been theoretically modeled [7] and applied in biophysics extensively during the past decade (see, e.g., [8]). Yet these classical purely dye-based systems show disadvantages regarding quenching efficiency [4] and photostability [9].If the donor molecule is placed in the vicinity of a metal surface instead of an organic acceptor, not only resonant energy transfer takes place but also the radiative lifetime of the donor molecule changes. For metal films this has been investigated extensively [10 -13]. Much less is known about donor molecules in the vicinity of metal nanoparticles. Theoretical treatments of the moleculenanoparticle problem [14 -17] predict energy transfer rates and radiative decay rates that deviate substantially from what has been found for dye molecules in front of a metal film. Both radiative and nonradiative rates are expected to depend critically on size and shape of the nanoparticle, the distance between the dye molecule and the nanoparticle, the orientation of the molecular dipole with respect to the dye-nanoparticle axis, and the overlap of the molecule's emission with the nanoparticle's absorption spectrum. Recent experimental investigations deal with metal island films or rough surfaces only (see [18,19] and references in [20]), where the above mentioned parameters are undefined.Here we report results of time-resolved fluorescence experiments on a donor-acceptor system composed of lissamine molecules (donor) chemically attached to a gold nanoparticle (acceptor). The distance between the lissamine molecule and the surface of the nanoparticle is kept constant at 1 nm, whereas the nanoparticle radius is varied between 1 and 30 nm. We find time constants for the energy transfer on a picosecond time scale which turn out to decrease with increasing nanoparticle size. In addition, the dye's radiative rate is reduced by more than an order of magnitude. Both effects are responsible for the drastic quenching of the fluorescence yield as predicted by the so-called...
Hydrogen bonds are like human beings in the sense that they exhibit typical grouplike behavior. As an individual they are feeble, easy to break, and sometimes hard to detect. However, when acting together they become much stronger and lean on each other. This phenomenon, which in scientific terms is called cooperativity, is based on the fact that “1+1 is more than 2”. By using this principle, chemists have developed a wide variety of chemically stable structures that are based on the reversible formation of multiple hydrogen bonds. More than 20 years of fundamental studies on these phenomena have gradually developed into a new discipline within the field of organic synthesis, and is nowadays called “noncovalent synthesis”. This review describes noncovalent synthesis based on the reversible formation of multiple hydrogen bonds. Starting with a thorough description of what the “hydrogen bond” really is, it guides the reader through a variety of bimolecular and higher order assemblies and exemplifies the general principles that determine their stability. Special focus is given to reversible capsules based on hydrogen‐bonding interactions that exhibit interesting encapsulation phenomena. Furthermore, the role of hydrogen‐bond formation in self‐replicating processes is actively discussed, and finally the review briefly summarizes the development of novel materials (nanotubes, liquid crystals, polymers, etc.) and principles (dynamic libraries) that recently have emanated from this intriguing field of research.
General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract: The synthesis is described of a series of calix [4]arenes with three different sensitizer chromophores ("antenna") attached to the lower rim via a short spacer. In the Eu3+ and Tb3+ complexes of these calixarenes, photoexcitation of the antenna can induce lanthanide emission via intramolecular energy transfer. Although the higher energy of the Tb3+ luminescent state makes it more difficult to sensitize than in the case of Eu3+, especially a triphenylene antenna is found to have strong sensitizing ability toward not only Eu3+ but also Tb3+, allowing excitation of the lanthanide with wavelengths extending to 350 nm.
Supramolecular chemistry in water is a constantly growing research area because noncovalent interactions in aqueous media are important for obtaining a better understanding and control of the major processes in nature. This Review offers an overview of recent advances in the area of water-soluble synthetic receptors as well as self-assembly and molecular recognition in water, through consideration of the functionalities that are used to increase the water solubility, as well as the supramolecular interactions and approaches used for effective recognition of a guest and self-assembly in water. The special features and applications of supramolecular entities in aqueous media are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.