This report summarizes updated CDC guidance for the evaluation, management, and follow‐up of people with lung injury related to electronic cigarette or vaping product use.
On November 9 and 10, 2015, the International Conference on Mesothelioma in Populations Exposed to Naturally Occurring Asbestiform Fibers was held at the University of Hawaii Cancer Center in Honolulu, Hawaii. The meeting was cosponsored by the International Association for the Study of Lung Cancer, and the agenda was designed with significant input from staff at the U.S. National Cancer Institute and National Institute of Environmental Health Sciences. A multidisciplinary group of participants presented updates reflecting a range of disciplinary perspectives, including mineralogy, geology, epidemiology, toxicology, biochemistry, molecular biology, genetics, public health, and clinical oncology. The group identified knowledge gaps that are barriers to preventing and treating malignant mesothelioma (MM) and the required next steps to address barriers. This manuscript reports the group’s efforts and focus on strategies to limit risk to the population and reduce the incidence of MM. Four main topics were explored: genetic risk, environmental exposure, biomarkers, and clinical interventions. Genetics plays a critical role in MM when the disease occurs in carriers of germline BRCA1 associated protein 1 mutations. Moreover, it appears likely that, in addition to BRCA1 associated protein 1, other yet unknown genetic variants may also influence the individual risk for development of MM, especially after exposure to asbestos and related mineral fibers. MM is an almost entirely preventable malignancy as it is most often caused by exposure to commercial asbestos or mineral fibers with asbestos-like health effects, such as erionite. In the past in North America and in Europe, the most prominent source of exposure was related to occupation. Present regulations have reduced occupational exposure in these countries; however, some people continue to be exposed to previously installed asbestos in older construction and other settings. Moreover, an increasing number of people are being exposed in rural areas that contain noncommercial asbestos, erionite, and other mineral fibers in soil or rock (termed naturally occurring asbestos [NOA]) and are being developed. Public health authorities, scientists, residents, and other affected groups must work together in the areas where exposure to asbestos, including NOA, has been documented in the environment to mitigate or reduce this exposure. Although a blood biomarker validated to be effective for use in screening and identifying MM at an early stage in asbestos/ NOA-exposed populations is not currently available, novel biomarkers presented at the meeting, such as high mobility group box 1 and fibulin-3, are promising. There was general agreement that current treatment for MM, which is based on surgery and standard chemotherapy, has a modest effect on the overall survival (OS), which remains dismal. Additionally, although much needed novel therapeutic approaches for MM are being developed and explored in clinical trials, there is a critical need to invest in prevention research, in whic...
Health care personnel who care for critically ill patients with suspected or confirmed novel coronavirus disease 2019 (COVID-19) routinely participate in procedures, such as endotracheal intubation, that may create infectious aerosols. Among persons infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, approximately 8% will require endotracheal intubation and mechanical ventilation. 1 Aerosol-generating procedures have been described as "…procedures performed on patients [that] are more likely to generate higher concentrations of infectious respiratory aerosols than coughing, sneezing, talking, or breathing." 2 Health Protection Scotland defines aerosol-generating procedures "as medical and patient care procedures that result in the production of airborne particles (aerosols) that create the potential for airborne transmission of infections that may otherwise only be transmissible by the droplet route." 3 Although there is no generally accepted and comprehensive list of aerosol-generating procedures performed during clinical care, examples include open suctioning of airways, sputum induction, manual ventilation, endotracheal intubation and extubation, noninvasive ventilation, bronchoscopy, and tracheotomy. 4 There is great interest in understanding the hazards posed by the range of potentially hazardous aerosol-generating procedures for the transmission of COVID-19 and other infectious diseases.Among the aerosol-generating procedures, performing endotracheal intubation is especially hazardous. The proceduralist performing endotracheal intubation is close to the patient's airway before, during, and after the procedure. The proceduralist is also likely to be present for the associated interventions that create respiratory aerosols, such as manual (bag) ventilation. A systematic literature review and meta-analysis that evaluated transmission of SARS coronavirus 1 (SARS-CoV-1) to health care personnel in association with exposure to aerosolgenerating procedures found a significantly increased odds ratio of 6.6. 5 This review also found an absolute risk increase of between 10% (cohort studies) and 15% (case-control studies) for transmission of SARS-CoV-1-associated infection to health care personnel performing intubation. 5 In addition, several other types of aerosol-generating procedures were also associated with increased risk for SARS-CoV-1, including tracheotomy, noninvasive ventilation, and manual ventilation prior to intubation. 5 However, tracheal intubation was the procedure most consistently associated with transmission across the studies reviewed. Given that high viral loads of SARS-CoV-2 are found in sputum and upper respiratory secretions of patients with COVID-19, endotracheal intubation should also be viewed as a highrisk procedure for exposure to and transmission of SARS-CoV-2. 6
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.