Dynamic ocean management, or management that uses near real-time data to guide the spatial distribution of commercial activities, is an emerging approach to balance ocean resource use and conservation. Employing a wide range of data types, dynamic ocean management can be used to meet multiple objectives-for example, managing target quota, bycatch reduction, and reducing interactions with species of conservation concern. Here, we present several prominent examples of dynamic ocean management that highlight the utility, achievements, challenges, and potential of this approach. Regulatory frameworks and incentive structures, stakeholder participation, and technological applications that align with user capabilities are identified as key ingredients to support successful implementation. By addressing the variability inherent in ocean systems, dynamic ocean management represents a new approach to tackle the pressing challenges of managing a fluid and complex environment.
Analyses of the foraging behavior of large cetaceans have generally focused on either correlations with environmental conditions at regional scales or observations of surface behavior. We employed a novel approach combining multi-scale analyses of simultaneous environmental conditions, surface and subsurface humpback whale Megaptera novaeangliae movements, and sand lance Ammodytes spp. prey aggregations in the Gulf of Maine, USA. At the fine scale (<1 km), digital tags recorded whale movement and behavior in 3 dimensions. Concurrent synoptic prey data were collected using EK60 echosounders with simultaneous surface measurements of temperature and relative fluorescence within 1 km of the tagged whale. A geospatial analysis of environmental features and foraging patterns was conducted at the regional, seascape scale (~10 km). At the seascape scale, we found: (1) a negative relationship between relative fluorescence and sand lance density; (2) a positive relationship between predator surface feeding, presumed sand lance density, and sand bottom types near high-slope edges; (3) a cyclical relationship for predator surface-feeding likelihood and prey density with tidal height; and (4) an observed temporal lag between peak prey density and predator surface-feeding likelihood. At the fine scale, we found that: (1) time of day was the most important factor in predicting whether a whale was feeding when it surfaced; and (2) surface feeding occurred more often around more dense, vertically distributed schools of prey. Multiscale and multitrophic level studies are an important component in understanding the foraging ecology of top predators in marine systems.
Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types ("wops" and "grunts") were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.