False-positive MR diagnoses of medial meniscal tears are more common for longitudinal tears than other tear types and are also more common with MR abnormalities at either the superior surface or the meniscocapsular junction. Spontaneous healing of longitudinal tears accounts for some false-positive MR diagnoses.
Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements.
While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.