3GPP has enhanced the point-to-multipoint (PTM) communication capabilities of 4G LTE in all releases since the adoption of eMBMS (enhanced Multimedia Broadcast Multicast Service) in Release 9. Recent enhancements cover not only television services, but also critical, machinetype and vehicular communications, following the backwards-compatibility design philosophy of LTE. This paper discusses the opportunity in the design and standardization of 5G to break with the existing paradigm for PTM transmissions in 4G LTE, where broadcast PTM transmissions were initially conceived as an add-on and pre-positioned service. 5G brings the opportunity to incorporate PTM capabilities as built-in delivery features from the outset, integrating point-topoint (PTP) and PTM modes under one common framework and enabling a dynamic use of PTM to maximize network and spectrum efficiency. This approach will open a door to completely new levels of network management and delivery cost-efficiency. The paper also discusses the implications of PTM for network slicing, to customize and optimize network resources on a common 5G infrastructure to accommodate different use cases and services taking into account the user density.
In the recent past, with the ubiquitous adoption of smartphones and tablets, there has been an exponential increase in data rate demands which has become increasingly challenging for network operators to support. This trend is expected to continue in future, with the advent of high-performance gaming and increasing appetite for immersive applications and social media experiences. Such factors have contributed to the development of the fifth generation (5G) of mobile networks, which would be supporting significantly higher data rates with improved reliability and latency. 5G has also enabled the deployment of wireless virtual reality applications, with wide-ranging use cases. In this work, we consider the key challenges for broadcasting such content to a large number of audience thereby enabling new disruptions in mass media consumption. The technology potential and practical constraints for such deployments were also evaluated using realistic network settings. Based on the performance evaluations, it was shown that with slightly higher system bandwidth requirements, VR broadcast can be supported under ideal conditions, using 5G millimeter wave small cell networks. Potential areas for future work in order to make VR broadcast a reality is also discussed.
The first release of 5th Generation (5G) technology from 3 rd Generation Project Partnership (3GPP) Rel'15 has been completed in December 2018. An open issue with this release of standards is that it only supports unicast communications in the core network and Point-To-Point (PTP) transmissions in the Radio Access Network (RAN), and does not support multicast/broadcast communications and Point-To-Multipoint (PTM) transmissions, which are 3GPP system requirements for 5G applications in a number of vertical sectors, such as Automotive, Airborne Communications, Internet-of-Things, Media & Entertainment, and Public Warning & Safety systems. In this article, we present novel mechanisms for enhancing the 5G unicast architecture with minimal footprint, to enable efficient PTM transmissions in the RAN, and to support multicast communications in the Rel'15 core as an in-built delivery optimization feature of the system. This approach will enable completely new levels of network management and delivery cost-efficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.