Silicon kerf residue is generated during the wafering process of pure silicon in the photovoltaic value chain. The generated by-product has a high volume, and the particle size is typically below 1 µm. Although the fine particles are partly oxidized, the material may be beneficial in different metallurgical applications such as grain refining and alloy composition adjustments. This work studies the dissolution behavior of silicon kerf in low alloy steel melts with the aim to upcycle the kerf material in the steel industry for different purposes. In this study, a steel alloy and the kerf residue were melted (at 1580 °C) in an alumina crucible placed in an induction furnace. The amount of added kerf residue was varied. The behavior of the particles in the solidified alloy was characterized by using an optical microscope, electron probe microscope (EPMA), and wavelength-dispersive X-ray spectroscopy (WDS) in order to study the dissolution behavior of the Si-kerf residue in the steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.