Astrocytes communicate with neurons, endothelial and other glial cells through transmission of intercellular calcium signals. Satellite glial cells (SGCs) in sensory ganglia share several properties with astrocytes, but whether this type of communication occurs between SGCs and sensory neurons has not been explored. In the present work we used cultured neurons and SGCs from mouse trigeminal ganglia to address this question. Focal electrical or mechanical stimulation of single neurons in trigeminal ganglion cultures increased intracellular calcium concentration in these cells and triggered calcium elevations in adjacent glial cells. Similar to neurons, SGCs responded to mechanical stimulation with increase in cytosolic calcium that spread to the adjacent neuron and neighboring glial cells. Calcium signaling from SGCs to neurons and among SGCs was diminished in the presence of the broad-spectrum P2 receptor antagonist suramin (50 µM) or in the presence of the gap junction blocker carbenoxolone (100 µM), whereas signaling from neurons to SGCs was reduced by suramin, but not by carbenoxolone. Following induction of submandibular inflammation by Complete Freund's Adjuvant injection, the amplitude of signaling among SGCs and from SGCs to neuron was increased, whereas the amplitude from neuron to SGCs was reduced. These results indicate for the first time the presence of bidirectional calcium signaling between neurons and SGCs in sensory ganglia cultures, which is mediated by the activation of purinergic P2 receptors, and to some extent by gap junctions. Furthermore, the results indicate that not only sensory neurons, but also SGCs release ATP. This form of intercellular calcium signaling likely plays key roles in the modulation of neuronal activity within sensory ganglia in normal and pathological states.
Directed screening of compounds selected from the Glaxo registry file for contractile activity on the isolated guinea pig gallbladder (GPGB) identified a series of 1,5-benzodiazepines with peripheral cholecystokinin (CCK) receptor agonist activity. Agonist efficacy within this series was modulated by variation of substituents on the N1-anilinoacetamide moiety. Remarkably, a single methyl group confers agonist activity, with an N-isopropyl substituent providing optimal efficacy. Hydrophilic substituents on the anilino nitrogen abolish agonist activity or produce antagonists of CCK. In contrast, hydrophilic electron-donating groups at the para-position of the anilino ring enhance or maintain in vitro and in vivo agonist activity. Despite decreased affinity for the human CCK-A receptor, relative to CCK-8, some of these compounds are equipotent to CCK as anorectic agents in rats following intraperitoneal administration.
Recently released data from the 2016 American National Election Study allow us to offer a multifaceted profile of white voters who voted for Donald J. Trump in the 2016 presidential election. We find that Trump’s supporters voted for him mainly because they share his prejudices, not because they’re financially stressed. It’s true, as exit polls showed, that voters without four-year college degrees were likelier than average to support Trump. But millions of these voters—who are often stereotyped as “the white working class”—opposed Trump because they oppose his prejudices. These prejudices, meanwhile, have a definite structure, which we argue should be called authoritarian: negatively, they target minorities and women; and positively, they favor domineering and intolerant leaders who are uninhibited about their biases. Multivariate logistic regression shows that, once we take these biases into account, demographic factors (age, education, etc.) lose their explanatory power. The electorate, in short, is deeply divided. Nearly 75% of Trump supporters count themselves among his enthusiastic supporters, and even “mild” Trump voters are much closer in their attitudes to Trump’s enthusiasts than they are to non-Trump voters. Polarization is profound, and may be growing.
Cerebral malaria complicated by cognitive sequelae is a major cause of morbidity in humans infected with Plasmodium falciparum. To model cognitive function after malaria, we created a rodent model of cerebral malaria by infecting C57BL/6 mice with Plasmodium berghei strain ANKA. After 7 days, an object-recognition test of working memory revealed a significant impairment in the visual memory of infected mice. This impairment was observed in the absence of confounding effects of infection. The cognitive dysfunction correlated with hemorrhage and inflammation. Furthermore, microglial activity and morphological changes detected throughout the brains of infected mice were absent from the brains of control mice, and this correlated with the measured cognitive defects. Similar testing methods in human studies could help identify subjects at risk for an adverse cognitive outcome. This murine model should facilitate the study of adjunctive methods to ameliorate adverse neurological outcomes in cerebral malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.