The purpose of this study was to implement the Monte Carlo method for clinical radiotherapy dose calculations. We used the EGS4/BEAM code to obtain the phase-space data for 6-20 MeV electron beams and 4, 6, and 15 MV photon beams for Varian Clinac 1800, 2100C, and 2300CD accelerators. A multiple-source model was used to reconstruct the phase-space data for both electron and photon beams, which retained the accuracy of the Monte Carlo beam data. The multiple-source model reduced the phase-space data storage requirement by a factor of 1000 and the accelerator simulation time by a factor of 10 or more. Agreement within 2% was achieved between the Monte Carlo calculations and measurements of the dose distributions in homogeneous and heterogeneous phantoms for various field sizes, source-surface distances, and beam modulations. The Monte Carlo calculated electron output factors were within 2% of the measured values for various treatment fields while the heterogeneity correction factors for various lung and bone phantoms were within 1% for photon beams and within 2% for electron beams. The EGS4/DOSXYZ Monte Carlo code was used for phantom and patient dose calculations. The results were compared to the dose distributions produced by a conventional treatment planning system and an intensity-modulated radiotherapy inverse-planning system. Significant differences (>5% in dose and >5 mm shift in isodose lines) were found between Monte Carlo calculations and the analytical calculations implemented in the commercial systems. Treatment sites showing the largest dose differences were for head and neck, lung, and breast cases.
The purpose of this study was to investigate the application of the Monte Carlo technique to the calculation and analysis of output factors for electron beams used in radiotherapy. The code EGS4/BEAM was used to obtain phase-space files for 6, 12 and 20 MeV clinical electron beams from a scattering-foil linac (Varian Clinac 2100C) for a clinically representative range of applicator and square or rectangular insert combinations. The source-to-surface distance used was 100 cm. The field sizes ranged from 1 x 1 cm2 to 20 x 20 cm2. These phase-space files were analysed to study the intrinsic beam characteristics and used as source input for relative dose and output factor computations in homogeneous water phantoms using the code EGS4/DOSXYZ. The calculated relative central-axis depth-dose and transverse dose profiles at various depths of clinical interest agreed with the corresponding measured dose profiles to within 2% of the maximum dose. Calculated output factors for the fields studied agreed with measured output factors to about 2%. This demonstrated that for the Varian Clinac 2100C linear accelerator, electron beam dose calculations in homogeneous water phantoms can be performed accurately at the 2% level using Monte Carlo simulations.
A preliminary study of the physical characteristics of a miniature multileaf collimator (mMLC) used with 4 MV x rays is reported. The mMLC attached to the accessory mount of a class C or D Varian linear accelerator (Varian Oncology Systems, Palo Alto, CA) with a source to aperture distance of 65 cm. The field penumbra using the small leaves was found to be consistent with the anticipated field penumbra using photon jaws at the same source to aperture distance as the mMLC. The percentage depth dose values of square fields were found to be consistent with the fields collimated with the upper and lower jaws. Output factors for the very small fields were found to vary rapidly. Circular fields could be produced with depth dose characteristics similar to those produced using conical tertiary collimators, commonly used for radiosurgery, but with a broader penumbra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.